Previously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of the regression model calculated by RSM. The experiments were conducted in saturated solution of CO2 with 3.5 % NaCl solution. STATISTICA program version 10 was used for data analysis. In conclusion a quadratic model is proposed to predict the effect of mentioned variables in CO2 environment.
Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
An overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .
Corrosion- induced damage in reinforced concrete structure such as bridges, parking garages, and buildings, and the related cost for maintaining them in a serviceable condition, is a source of major concern for the owners of these structures.
Fly ash produced from south Baghdad power plant with different concentrations (20, 25 and 30) % by weight from the cement ratio were used as a corrosion inhibitor as a weight ratio from the cement content.
The concrete batch ratio under study was (1:1.5:3) cement, sand and gravel respectively which is used in Iraq. All the raw materials used were locally manufactured.
Concrete slabs (250x250x70) mm dimensions were casted, using Poly-wood molds. Two steel bars were embedded in the central po
This research aims to modify the components of stainless steel alloy by the method of surface engineering through the single diffusion coating technique in order to obtain new alloys with high efficiency in resisting harsh environmental conditions. Steam a mixture of sodium chloride ( ) and sodium sulfate ( ) at a temperature of 900 and then compare it with the base alloy. The results showed that the alloys produced in this way are very efficient. The results showed that the aluminum coating showed high efficiency in resisting oxidation and provided better protection for a longer time compared to the uncoated alloy due to the oxide crust layer formed with high adhesion as well as the aluminum-rich phases, whether the phase
... Show MoreThe inhibitive effect of imidazol on the dissolution of Zn in (1M) HCl has been studied. The inhibion effect of imidazol ,protection efficiency and the corrosion rate of Zn in (1M) HCl were investigated at various concentrations (1x 10-3 – 5x10-3) M and tempearture range (285-328) K. The corrosion inhibitive of Zn by imidazol was studied using weight loss measurement and analytical titration of the amounts of dissolved zinc in acidic solution in presence and absent of imidazol. It was observed that imidazol led to protection efficiency reached to (88.93)% when (10)mM imidazol concentration was used. A linear relationship came true between (C/?) and (C); where (?) is the coverage of Zn surface by imidazol which could be obtained from
... Show More