Previously, many empirical models have been used to predict corrosion rates under different CO2 corrosion parameters conditions. Most of these models did not predict the corrosion rate exactly, besides it determined effects of variables by holding some variables constant and changing the values of other variables to obtain the regression model. As a result the experiments will be large and cost too much. In this paper response surface methodology (RSM) was proposed to optimize the experiments and reduce the experimental running. The experiments studied effects of temperature (40 – 60 °C), pH (3-5), acetic acid (HAc) concentration (1000-3000 ppm) and rotation speed (1000-1500 rpm) on CO2 corrosion performance of the regression model calculated by RSM. The experiments were conducted in saturated solution of CO2 with 3.5 % NaCl solution. STATISTICA program version 10 was used for data analysis. In conclusion a quadratic model is proposed to predict the effect of mentioned variables in CO2 environment.
This study focuses on studying the effect of reinforced steel in detail, and steel reinforcement (tensile ratio, compression ratio, size, and joint angle shape) on the strength of reinforced concrete (compressive strength) Fc' and searching for the most accurate details of concrete divisions, their behavior, and corner resistance of reinforced concrete joint. The comparison of this paper with previous studies, especially in the studied properties. The conclusions of the chapter are summarized that these effects had a clear effect and a specific effect on the behavior and resistance of the reinforced concrete corner joints under the negative moments and under their influence and the resulting stress conditions. The types of defects that can
... Show MoreBackground: Tap waters play an important role in fulfilling the people needs for drinking and domestic purposes. Contaminate the tap water with different pollutants has become an issue of great concern for 90% of people who are depended on the tap water as the main source of drinking. Pollutants can make their way easily into the delivering pipes which suffer from the leaking resulting in decreasing the quality of water. Objective: Therefore, assess the water quality for drinking purpose by calculating the water quality index is an important tool to ascertain whether the water is suitable for human consumption or not. Methods: In the present work, the water quality of the Al-Salam, western region of Baghdad city, Iraq was investigated for 7
... Show MoreABSTRACT The isolation and characterization of (27) isolate of extreme halophilic bacteria was performed ninteen isolate belonged to the genus Halobacterium which included Hb.halobium. Hb. salinarium, Hb. volcanii. Growth curve and generation time in logarthmic phase was measured and found to be (12.8hr±0.32), (11.2hr±0.2), (9.8hr±0.87), respectivaly. Effect of various concentrations of NaCl, KCI, NH4Cl and MgSO4.7H2O was studied, NaCl was essential for the rod shape rapid growth Rat and pigmentation. Less than 1% concentration caused lysis of bacteria. Yeast extract was the best carbone source as compared with glucose and casamino acid.
Corncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitate
... Show MoreA field experiment was conducted during the spring season 2020 in Karbala proving/ Al-Sharia Distrit, located at latitude N 32° 42' 13.8" and longitude E 43° 54' 36.6" and at an altitude of 27 m above sea level. The experiment included a study of two factors: the first, Irrigation Interval, three treatments were used: irrigation treatment every 2 days, Irrigation treatment every 4 days, and Irrigation treatment every 6 days. The second factor is the addition of soil conditioners, in which four treatments were used: the control treatment without any addition, the treatment of adding bio-organic fertilizers, the treatment of adding water-conserving technology (polymer), and the treatment of adding water-conserving technology + fertilizers O
... Show MoreSince 1990 internal combustion engines and variable systems has been considered as emission. Noise can be defined as undesirable sound, and in high levels it can be considered ahealth hazard. Large internal combustion engines produce high levels of noise. In many countries there are laws restricting the noise levels in large engine rooms and fixed applications. Locomotives engines have the minimum emission influence because of noise control techniques capability.
In this paper study on a single cylinder internal combustion engine was conducted. The engine works by adding ethanol to gasoline, at variable speeds, without adding ethanol, and with adding 10 and 20% ethanol in volumetric ratio. Using one sound insulator or two or with
... Show MoreThis research deals with the effects of welding variables using MIG/MAG spot by using Argon (Ar) gas and CO2 to show their effect on the mechanical characteristics and microstructure of low alloy steel type DIN15Mo3 and determine the optimum condition for the process of welding ; current & time. The results show the possibility of using CO2 and also Ar in low alloy steel welding with a little decrease in the shear force of not more than 13% for 4mm thickness and time 2sec. The shear force increased when using Ar instead of CO2 to be , The shear force reach 36KN when using Ar at 2mm thickness time of 8 sec and current of 220 Amp. , when used CO2 instead of Ar d
... Show MoreIn this research, geopolymer mortar had to be designed with 50% to 50% slag and fly ash with and without 1% micro steel fiber at curing temperature of 240℃. The molarity of alkaline solution adjusted with 12 molar sodium hydroxid to sodium silicate was 2 to 1, reaspectivly. The heat of curing increased the geopolymerization proceses of geoplymer mortar, which led to increasing strength, giving the best result and early curing age. The heat was applied for two days by four hours each day. It was discovered in the impact test that the value first crack of each mix was somewhat similar, but the failure increased 72% for the mixture that did not contain fiber. For the energy observation results it was shown that the mixt
... Show MoreThis paper demonstrates an experimental and numerical study on the behavior of reinforced concrete (RC) columns with longitudinal steel embedded tubes positioned at the center of the column cross-section. A total of 12 pin-ended square sectional columns of 150 × 150 mm having a total height of 1400 mm were investigated. The considered variables were the steel tube diameters of 29, 58, and 76 mm and the load eccentricity (0, 50, and 150) mm. Accordingly, these columns were divided into three groups (four columns in each group) depending on the load eccentricity (e) to column depth (h) ratio (e/h = 0, 1/3, and 1). For each group, one column was solid (reference), and the other three columns contained steel tubes with hollow rat
... Show MoreBackground. Material tribology has widely expanded in scope and depth and is extended from the mechanical field to the biomedical field. The present study aimed to characterize the nanocoating of highly pure (99.9%) niobium (Nb), tantalum (Ta), and vanadium (V) deposited on 316L stainless steel (SS) substrates which considered the most widely used alloys in the manufacturing of SS orthodontic components. To date, the coating of SS orthodontic archwires with Nb, Ta, and V using a plasma sputtering method has never been reported. Nanodeposition was performed using a DC plasma sputtering system with three different sputtering times (1, 2, and 3 hours). Results. Structural and elemental analyses were conducted on the deposited coating
... Show More