The performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of woven-wire (60 mesh size), stainless steel 316, is examined for the removal of copper from synthetic solution of o.5 M sodium chloride containing 125 ppm at pH ≈ 3.5. The effect of total applied current, rotation speed on the figures of merit of the reactor is analyzed. For an applied current of 300 mA at 100 rpm, the copper concentration decreased from 125 to mg l-1 after 60 min of electrolysis with a specific energy consumption of 1.75 kWh kg-1 and a normalized space velocity of 1.62 h-1. The change in concentration was higher when the total applied currents were increased because of the turbulence-promoting action of the hydrogen evolution. The results suggest that the applied current must represent a compromise between the increase in space time yield or normalized space velocity and the increase in the specific energy consumption.
The aim of the present research is to investigate the effecting of pH parameter on the feasibility of lead removal from simulated wastewater using an electrochemical system. Electrocoagulation method is one of electrochemical technology which is used widely to treat industrial wastewater. Parameters affecting this operation, such as initial metal concentration, applied current, stirrer speed, and contact time of electroprocessing were taken as 155ppm, 1.5 Ampere, 150 rpm, 60 minutes respectively. While pH of the simulated wastewater was in the range of 2 to 12 in the experiments. It was found from the results that pH is an important parameter affecting lead removal operation. The best value of pH parameter is appro
... Show MoreThis paper was aimed to study the efficiency of forward osmosis (FO) process as a new application for the treatment of wastewater from textile effluent and the factors affecting the performance of forward osmosis process.
The draw solutions used were magnesium chloride (MgCl2), and aluminum sulphate (Al2 ( SO4)3 .18 H2O), and the feed solutions used were reactive red, and disperse blue dyes.
Experimental work were includes operating the forward osmosis process using thin film composite (TFC) membrane as flat sheet for different draw solutions and feed solutions. The operating parameters studied were : draw solutions concentration (10 – 90 g/l), feed solutions concentration (5 – 30 mg/l), draw solutions flow rate (10 – 50 l/hr
The study's objective is to produce Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (Cadmium Cd+2, Nickel Ni+2, and Vanadium V+5) ions from industrial wastewater. The temperature effect (20-50) °C and initial concentration effect (100-800) mg L-1 on the adsorption process were studied. A simulation aqueous solution of the ions was used to identify the adsorption isotherms, and after the experimental data was collected, the sorption process was studied kinetically and thermodynamically. The Langmuir, Freundlich, and Temkin isotherm models were used to fit the data. The results showed that Cd, Ni, and V ions on the GO adsorbing surface matched the Langmuir model with correlation coefficients (R2)
... Show MoreThe study's objective is to produce Nano Graphene Oxide (GO) before using it for batch adsorption to remove heavy metals (Cadmium Cd+2, Nickel Ni+2, and Vanadium V+5) ions from industrial wastewater. The temperature effect (20-50) °C and initial concentration effect (100-800) mg L-1 on the adsorption process were studied. A simulation aqueous solution of the ions was used to identify the adsorption isotherms, and after the experimental data was collected, the sorption process was studied kinetically and thermodynamically. The Langmuir, Freundlich, and Temkin isotherm models were used to fit the data. The results showed that Cd, Ni, and V ions on the GO adsorbing surface matched the Langmuir mo
... Show MoreAbstract
In order to make an improvement associated with rotating biological contactor (RBC), a new design of biofilm reactor called as Rotating perforated disc biological contactor (RPBC) was developed in which the rotating discs are perforated. The transfer of oxygen from air to wastewater was investigated. Mass-transfer coefficient (KLa) in the liquid phase was determined by measuring the rate transfer of oxygen. A laboratory scale of (RPBC) consisted of a semicircular trough was used with a working capacity of 40 liters capacity of liquid. Synthetic wastewater was used as a liquid phase, while air was used as a gas phase.
The effects of m
... Show MoreIn this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreRelease of industrial effluents comprising dyes in water bodies is one of the foremost causes of water pollution. Therefore, the proper and proficient treatment of these dyes contaminated left-over material before their release is crucial. Herein, an eco-friendly biological macromolecule Gum-Acacia (GA) integrated Fe3O4 nanoparticles composite hydrogel was manufactured via co-precipitation technique for effective adsorption of Congo red (CR) dye existing in water bodies. The as-prepared magnetic GA/Fe3O4 composite hydrogel was characterized by FTIR, XRD, EDX, VSM, SEM, and BET techniques. These studies discovered the fruitful fabrication of biodegradable magnetic GA/Fe3O4 composite hydrogel possessing porous structure with large surface are
... Show MoreThe effect of irradiation and exposure time of laser light on the fluorescence emission of DCM dye in PMMA polymer contained in the composition mold using different metals have been investigated. It was found that the fluorescence intensity decreases as the exposure time increases and then reaches stabilization at long times. The effect of the incident laser power on fluorescence intensity of DCM dye in PMMA polymer at 10-3 M and 20% mixing ratio, using copper disks of composition molds, has been studied too. It was observed that there is an upward knick in the curve at laser intensity of 19.2 W/cm2, which may be associated with the threshold for amplified spontaneous emission (ASE) or laser action. And at intensity higher than about 88.
... Show More