The present studier aims to study the kinetic of reaction at different experimental conditions depending on coliform bacteria concentration and hypochlorite ion. The effects that had been investigated were different of sodium hypochlorite doses, contact time, pH and temperature (20, 29, 37) o C. The water samples were taken from Al-Wathba water treatment plant in Risafa side of Tigris River in Baghdad. The biological tests included the most probable number (M.P.N) for indicating the concentration of coliform bacteria with different contact times and the total plate count (T.P.C) for indicating the amount of colonies for general bacteria. The iodimetry method (chemical test) was used for indicating the concentration of hypochlorite ion with different contact times. Different models were examined to fit the experimental data including the kinetics power law (first and second order) and Selleck model. It was found that the Selleck model fitted well the experimental data in which degree of Selleck model was equal to two and the rate constants was 1.3791 x 10-5 L / (mole min) at 20o C, 3.0806 x 10-5 L / (mole min) at 29oC, and 5.738 x 10-5 L / (mole min) at 37o C.
In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe study aimed to determine of some Optimum conditions for bioremediation and removing of seven mineral elements included hexavalent chromium, nickel, cobalt, cadmium, lead, iron and copper as either alone or in group by living and heat treated cells of baker’s yeast Saccharomyces cerevisiae. The dried baker's yeast from Aldnaamaya China Company was used in this study. Biochemical tests was used to ensure yeast belonging to S. cerevisiae and then used to remove the mentioned mineral elementes under different conditions which included incubation period, pH, and temperature. It was found that the best of these conditions was 60 minutes for duration of incubation, 6 for pH, 25 ᵒC for temperature. During the study the behavior of living
... Show MoreThe pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
Hydro cracking of heavy oil is used in refinery to produce invaluable products. In this research, a model of hydro cracking reactor has been used to study the behavior of heavy oil in hydro cracking under the conditions recommended by literature in terms lumping of feed and products. The lumping scheme is based on five lumps include: heavy oil, vacuum oil, distillates, naphtha and gases. The first order kinetics was assumed for the conversion in the model and the system is modeled as an isothermal tubular reactor. MATLAB 6.1 was used to solve the model for a five lump scheme for different values of feed velocity, and temperature.
Abstract
The removal of water turbidity by using crumb rubber filter was investigated .The present study was conducted to evaluate the effect of variation of influent water turbidity (10, 25 and 50 NTU), media size (0.6and 1.14mm), filtration rate (25, 45 and 65 l/hr) and bed depth (30 and 60 cm) on the performance of mono crumb rubber filter in response to the effluent filtered water turbidity and head loss development, and compare it with that of conventional sand filter.Results revealed that 25 l/hr flow rate and 25 NTU influent turbidity were the best operating conditions. smaller media size and higher bed depth gave the best removal efficiency while higher media size and small bed depth gave lower head
... Show MoreThe aim of the thesis is to estimate the partial and inaccessible population groups, which is a field study to estimate the number of drug’s users in the Baghdad governorate for males who are (15-60) years old.
Because of the absence of data approved by government institutions, as well as the difficulty of estimating the numbers of these people from the traditional survey, in which the respondent expresses himself or his family members in some cases. In these challenges, the NSUM Network Scale-Up Method Is mainly based on asking respondents about the number of people they know in their network of drug addicts.
Based on this principle, a statistical questionnaire was designed to
... Show MoreA research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with th
Barium–doped TiO2 / n-Si photodetector was fabricated by spray pyrolysis exhibited visible enhancement responsivity profile with peak response at 600 nm flat response between 650 and 900 nm. The quantum efficiency was 30% and specific detectivity was 5x1012 W-1Hz1/2cm at peak response. The GaAlAs laser diode was used to estimate the rise time of the detector.