In this work, thermodynamic efficiency of individual cell and stack of cells (two cells) has been computed by studying the variation of voltage produced during an operation time of 30 min as a result of the affected parameters:- stoichiometric feed ratio, flow field design on single cell and feed distribution on stack of cells. The experiments were carried out by using two cells, one with serpentine flow field and the other with spiral flow field. These cells were fed with hydrogen and oxygen at low volumetric flow rates from 1 to 2 ml/sec and stoichiometric ratios of fuel (H2) to oxidant (O2) as 1:2, 1:1 and 2:1 respectively. The results showed that the highest voltage and efficiency can be obtained for the stoichiometric ratio of 1:2, while the ratio of 2:1 produced the lowest voltage and efficiency. Also the best results were obtained with the serpentine flow pattern after comparing with the spiral flow pattern in a single cell. Likewise it was proved that the voltage and efficiency are maximized when using the stoichiometry of 1:2, besides that the parallel feed connection of the stack of cells produced much power than the series connection.
I noticed a researcher while working in the kindergarten that there is a group of
parameters resort to the use of different methods may be some undesirable and some
undesirable So felt researcher detection methods used parameters Riyadh in the face of the
pressures of life, being engaged in kindergarten eligibility, governmental or being married or
unmarried, as well as educational attainment for this parameter.
To achieve the objectives of the research: -
The researcher prepare a scale methods face the pressures of life of the parameters
have been confirmed the veracity of the paragraphs of the scale of the presentation to a group
of experts in this area, and extracted power discriminatory clauses scale and extra
The nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.
This paper discussed the solution of an equivalent circuit of solar cell, where a single diode model is presented. The nonlinear equation of this model has suggested and analyzed an iterative algorithm, which work well for this equation with a suitable initial value for the iterative. The convergence of the proposed method is discussed. It is established that the algorithm has convergence of order six. The proposed algorithm is achieved with a various values of load resistance. Equation by means of equivalent circuit of a solar cell so all the determinations is achieved using Matlab in ambient temperature. The obtained results of this new method are given and the absolute errors is demonstrated.
Background: Peripheral giant cell lesion (PGCL) and central giant cell lesion (CGCL) of the jaws have a distinct clinical behavior.Giant cell tumour (GCT) is a benign locally aggressive neoplasm affects the long bones. Both lesions are characterized histologically by multinucleated giant cells in a background of ovoid to spindle-shaped mesenchymal cells. The WW domain-containing oxidoreductase (WWOX) gene is located at 16q23.1–16q23.2, a region that spans the second most common human fragile site, FRA16D, at 16q23.2.The Ki-67 antigen is a nuclear protein that is associated with and may be necessary for cellular proliferation.Ki-67 protein is present during all active phases of the cell cycle (G1, S, G2, and mitosis), but is absent fr
... Show MoreStereo lithography (SLA) three-dimensional (3D) printing process is a type of additive manufacturing techniques that uses digital models from computer-aided design to automatically produce customized 3D objects. Around 30 years, it has been widely utilized in the manufacturing, design, engineering, industrial sectors and its applications in dentistry for manufacturing prosthodontics are very important. The stereo lithography technology is highly regarded because it can produce items with excellent precision especially when selecting the best process parameters. This review article offers a useful and scientific summary of SLA three-dimensional printing technology and its brief history. The specific type of 3D printers which is SLA t
... Show MoreStereo lithography (SLA) three-dimensional (3D) printing process is a type of additive manufacturing techniques that uses digital models from computer-aided design to automatically produce customized 3D objects. Around 30 years, it has been widely utilized in the manufacturing, design, engineering, industrial sectors and its applications in dentistry for manufacturing prosthodontics are very important. The stereo lithography technology is highly regarded because it can produce items with excellent precision especially when selecting the best process parameters. This review article offers a useful and scientific summary of SLA three-dimensional printing technology and its brief history. The specific type of 3D printers which is SLA type b
... Show More