Catalytic reforming of naphtha occupies an important issue in refineries for obtaining high octane gasoline and aromatic compounds, which are the basic materials of petrochemical industries. In this study, a novel of design parameters for industrial continuous catalytic reforming reactors of naphtha is proposed to increase the aromatics and hydrogen productions. Improving a rigorous mathematical model for industrial catalytic reactors of naphtha is studied here based on industrial data applying a new kinetic and deactivation model. The optimal design variables are obtained utilizing the optimization process in order to build the model with high accuracy and such design parameters are then applied to get the best configuration of this process by new design variables. New results related to aromatic and hydrogen production have been obtained (the highest hydrogen and aromatic) in comparison with those reported in the literature and with the conventional method.
NiO0.99Cu0.01 films have been deposited using thermal evaporation
technique on glass substrates under vacuum 10-5mbar. The thickness
of the films was 220nm. The as -deposited films were annealed to
different annealing temperatures (373, 423, and 473) K under
vacuum 10-3mbar for 1 h. The structural properties of the films were
examined using X-ray diffraction (XRD). The results show that no
clear diffraction peaks in the range 2θ= (20-50)o for the as deposited
films. On the other hand, by annealing the films to 423K in vacuum
for 1 h, a weak reflection peak attributable to cubic NiO was
detected. On heating the films at 473K for 1 h, this peak was
observed to be stronger. The most intense peak is at 2θ = 37
In this work, results of a mathematical analysis of the role of workpiece preheating in laser keyhole welding were presented. This analysis considered the steady-state welding as well as certain range of boundary conditions over which preheating effect would be indicated. This work is an attempt to interpret the role of preheating to increase welding depth and perform keyhole welding with high quality using physical and thermal properties of steel alloys.
Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MorePiezoelectric structures are nowadays used in many different applications. A better understanding of the influence of material properties and geometrical design on the performance of these structures helps to develop piezoelectric structures specifically designed for their application. Different equivalent circuits have been introduced in the literature to investigate the behaviour of piezoelectric transducers. The model parameters are usually determined from measurements covering the characteristic frequencies of the piezoelectric transducer. This article introduces an analytical technique for calculating the mechanical and electrical equivalent system parameters and characteristic frequencies based on material properties and geom
... Show MoreChalcopyrite thin films ternary Silver Indium Diselenide AgInSe2 (AIS) pure and Aluminum Al doped with ratio 0.03 was prepared using thermal evaporation with a vacuum of 7*10-6 torr on glass with (400) nm thickness for study the structural and optical properties. X-ray diffraction was used to show the inflance of Al ratio dopant on structural properties. X-ray diffraction show that thin films AIS pure, Al doped at RT and annealing at 573 K are polycrystalline with tetragonal structure with preferential orientation (112). raise the crystallinity degree. AFM used to study the effect of Al on surfaces roughness and Grain Size Optical properties such as the optical band gap, absorption coefficient, Extinction coefficient, refractive ind
... Show MoreBiomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show MoreThis research aims to study and reveal the influence of Bauhaus principles in contemporary graphic design. The researcher determined the objective/spatial/temporal limit: Study of the Bauhaus influence in the design of the graphic poster in Germany in 2020. The theoretical framework in the first section dealt with (the emergence and factors of the emergence of the Bauhaus school and its characteristics), while the second topic dealt with (the intellectual, functional and aesthetic data of the Bauhaus School), after which the indicators that resulted from the theoretical framework were produced.
He mentioned four previous studies, one of them was discussed in detail. In the third chapter he defined the methodology, society, and sam
... Show MoreIn this work, the design and implementation of a smart energy metering system has been developed. This system consists of two parts: billing center and a set of distributed smart energy meters. The function of smart energy meter is measuring and calculating the cost of consumed energy according to a multi-tariff scheme. This can be effectively solving the problem of stressing the electrical grid and rising consumer awareness. Moreover, smart energy meter decreases technical losses by improving power factor. The function of the billing center is to issue a consumer bill and contributes in locating the irregularities on the electrical grid (non-technical losses). Moreover, it sends the switch off command in case of the consumer bill is not
... Show More