Al-Rustamiyah plant is the oldest and biggest sewage treatment plant in Iraq; it locates in the south of Baghdad city. The plant suffers from serious problems associated with overflow and low capacity. The present work aims to upgrade the heart of biological treatment process through suggesting the use of membrane bioreactor; (MBR). In this work, fouling of membrane during sewage treatment has been analyzed experimentally and theoretically by fouling mechanisms. Aeration has been applied in order to control fouling through producing effective diameters of air bubbles close to the membrane walls. Effect of air flow rate on flux decline was investigated. Hermia's models were used to investigate the fouling mechanisms. The results showed that cake formation is the best fitted model (R2≥0.98) followed by intermediate blocking occurred with 9 L/min aeration rate. Cake layer formation is the best fit mechanism in all aeration rates (1-9 L/min) in presence of microalgae. SEM images of the membrane surface before and after filtration showed high density pores membrane surface proved a cake fouling occurring. It was found that aeration represents the most effective technique for fouling domination in addition to its important economic aspects for algae growth and propagation. An enhancement of 70.8% in flux at 9 L/min air flow has been revealed. MBR proved to be more efficient and more convenient than activated sludge since it eliminates the needing of sedimentation tanks and upgrading Al-Rustamiyah plant that has low available space for expansion.
Adhrt all fungal biological control ability Tdhadah less than 2 repel Alaftran Almamradan showed leaky mushroom Biological control is thermally laboratories and different concentrations of 5, 10 and 20% inhibition in the growth of fungus colonies amounted to 3.8 cm and 3.1 and 2.4 respectively in comparison with control 9 cm
Petroleum is one of the most important substances consumed by man at present times, a major energy source in this century, petroleum oils can cause environmental pollution during various stages of production, transportation, refining and use, petroleum hydrocarbons pollutions ranging from soil, ground water to marine environment, become an inevitable problem in the modern life, current study focused on bioremediation process of hydrocarbons contaminants that remaining in the bottom of gas cylinders and discharged to the soil. Twenty-four bacterial isolates were isolated from contaminated soils all of them gram negative bacteria, bacterial isolates screening to investigate the ability of biodegradation of hydrocarbons, these isolates
... Show MoreThis encapsulates the general relationship between plant and bacteria in the natural and agricultural ecosystem. It is based on the activities of useful bacteria, such as plant growth-promoting bacteria (PGPRs) and nitrogen-fixing bacteria, in promoting plant growth and plant tolerance to stressful situations regarding pollution, salinity, and drought. The article also mentions that the bacteria maintain plant health by secretion of phytohormones, nitrogen fixation, solubilization of phosphate, and production of antibiotics against pathogenic bacteria. The article also mentions the existing applications of the interaction in sustainable agriculture and bioremediation of contaminated soils.
Introduction: Diabetic foot infections are one of the most severe complications of diabetes. This study was aimed to determine the common bacterial isolates of diabetic foot infections and the in vitro antibiotic susceptibility then treatment.
Methods: A swab was taken from the foot ulcer, and the aerobic bacteria were isolated and identified by cultural, microscopic and biochemical test, then by api-20E system. After that their antibiotic susceptibility pattern was determined. Then local and systemic treatment was used to treat the diabetic foot patients.
Results: Bacterial isolates belonging to twelve species were obtained from diabetic foot patients. Gram (-) bacteria were the predominant pathogens in the diabetic foot infection
The present calculation covers the building shield during irradiation process and under water storage of three milion curries Cobalt-60 radiation source the calculation results in design requirement of 8m depth of water in the source stoeage pool
?? ????? ?? ??? ??????? ?? ???? ????? ???????? ?????? ????? ????? ???????? ??? ??? ????? ??????? ??? ?????? ???? ????? ???? ????? ???? ???? ???? ?????? ??????? ????? ?????? ???????? ??????? ??????? 40 ???? ??? ?? ???????? ?????????? ???? ?? ?????? ?? ??????? ???????? ???????? ??????
Two field experiments were conducted during the spring seasons of 2000,2001.The aim was to study the effect of hardening to drought tolerance on moisture percentage in root and stem of sunflower plant during growth stages . Asplit-split plots design was used with three replications.The main plots included irrigation treatments:irrigation to100%(full irrigation),75and50%of available soil water.The sub plots were the cultivars Euroflor and Flame.The sub-sub plots represented four seed soaking treatments :Control(unsoaked),soaking in water ,Paclobutrazol solution(250ppm),and Pix solution(500ppm). The soaking continued for 24 hours then seeds were dried at room temperature until they regained their original weight. Amount of water
... Show MoreProduction of the steroidal saponin digitonin in multiplied shoots of Digitalis purpurea , (var. Excelsior Mixed) has been achieved in vitro by two experiments. In the experiment 1, shoot tips ( 1cm length ) explants from the sterilized seedlings were excised and cultured on MS medium ( Murashige and Skoog medium) supplemented with 0.5 mg/L TDZ (thidiazuron) and cholesterol at the concentrations 0.0, 0.1, 0.3, 0.5, 1.0, 1.5, 2.0 or 4.0 mg/L. After 45 day, results showed that the treatment with 0.5 mg/L TDZ and 2.0mg/L cholesterol had a positive effected on increasing the dry weight of multiplied shoots and their production of digitonin when compared with other treatments, where this treatment gave 2
... Show More