PVC/Kaolinite composites were prepared by the melt intercalation method. Mechanical properties, thermal properties, flammability and water absorption percentage of prepared samples were tested. Mechanical characteristic such as tensile strength, elongation at break; hardness and impact strength (charpy type) were measured for all samples. It was found that the tensile strength and elongation at break of PVC composites decreased with increasing kaolinite loading. Also, the hardness of the composites increases with increase in filler content .The impact strength of the composites at the beginning increases at lower kaolinite loadings is due to the lack of kaolin adhesion to the matrix. However, at higher kaolin loadings. This severe agglomeration of the filler due to its high surface energy creates many crack-initiation and stress-concentration sites, which are sensitive to impact stresses and cause detrimental effects on the impact properties of the composite. There is a general increase in absorption rate with increase in kaolin content. Thermal properties of PVC /kaolinite composites were characterized using Differential Scanning Calorimetry (DSC) and thermal conductivity analyzer. The results showed Tg shifted toward higher temperature for kaolinite composites compared to neat PVC .Also, thermal conductivity measurement value and effusivity increased with increasing filler loading .Heat capacity decreased with increasing filler content. The higher the filler content the higher burning time, the lower rate of burning and the lower height of the flame which are evident at 12wt. % for kaolinite.
The lead has adverse effects in contamination the aquatic environment, for this reason, a laboratory simulation was conducted using kaolinite collected from the Ga’ara Formation at western Iraq to be considered as a natural sorbent material that can be addressed Pb2+ from the aqueous environments. The Energy-Dispersive X-ray Spectroscopy and atomic absorption spectroscopy clarifying very fine grains and pure phase with a very little quantity of quartz and has a number of active sites for adsorption. The sorption of kaolinite for the Pb2+ has been carefully tested by several designed laboratory experiments. Five lead solutions of different concentrations (25, 50, 75, 100 and 125 ppm) were tested under different values of pH (1.3-9)
... Show MoreA polycrystalline CdTefilms have been prepared by thermal evaporation technique on glass substrate at room temperature. The films thickness was about700±50 nm. Some of these films were annealed at 573 K for different duration times (60, 120 and 180 minutes), and other CdTe films followed by a layer of CdCl2 which has been deposited on them, and then the prepared CdTe films with CdCl2 layer have been annealed for the same conditions. The structures of CdTe films without and with CdCl2 layer have been investigated by X-ray diffraction. The as prepared and annealed films without and with CdCl2 layer were polycrystalline structure with preferred orientation at (111) plane. The better structural pr
... Show MoreAims: This study was conducted to assess the effect of the addition of yttrium oxide (Y2O3) nanoparticles on the tensile bond strength, tear strength, shore A hardness, and surface roughness of soft-denture lining material. Materials and Methods: Y2O3 NPs with 1.5 and 2 wt.% were added into acrylic-based heat-cured soft-denture liner. A total of 120 specimens were prepared and divided into four groups according to the test to be performed (tensile bond strength, tear strength, surface hardness, and surface roughness). Results: There was a highly significant increase in tensile bond strength between the soft liner and the acrylic denture base, tear strength, and hardness at both concentrations as compared to the control group, whereas ther
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreBackground: Poly (methylmethacrylate) is the most widely used material in denture fabrication. The characteristics of acrylic resin which support microorganism development can threaten the oral health of denture users. This study was assigned to prepareand incorporate Ag-Zn zeolite powder into heat cured denture base material as antimicrobial material and to investigate its effect on some properties of heat cured acrylic denture base materials. Materials and methods: Sliver –zinc zeolite was prepared by ion exchange method and characterized then incorporated into poly (methylmethacrylate) powder in0.5% by weight. Specimens were constructed and divided into 6 groups according to the using tests; each group was subdivided into 2 groups
... Show MoreThe purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie
... Show MoreIn this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreIn This research a Spectroscopic complement and Thermodynamic properties for molecule PO2 were studied . That included a calculation of potential energy . From the curve of total energy for molecule at equilibrium distance , for bond (P-O), the degenerated of bond energy was (4.332eV) instate of the vibration modes of ( PO2 ) molecule and frequency that was found active in IR spectra because variable inpolarization and dipole moment for molecule. Also we calculate some thermodynamic parameters of ( PO2 ) such as heat of formation , enthalpy , heat Of capacity , entropy and gibb's free energy Were ( -54.16 kcal/mol , 2366.45 kcal/mol , 10.06 kcal /k/mol , 59.52 k
... Show More