The Khor Mor gas-condensate processing plant in Iraq is currently facing operational challenges due to foaming issues in the sweetening tower caused by high-soluble hydrocarbon liquids entering the tower. The root cause of the problem could be liquid carry-over as the separation vessels within the plant fail to remove liquid droplets from the gas phase. This study employs Aspen HYSYS v.11 software to investigate the performance of the industrial three-phase horizontal separator, Bravo #2, located upstream of the Khor Mor sweetening tower, under both current and future operational conditions. The simulation results, regarding the size distribution of liquid droplets in the gas product and the efficiency gas/liquid separation, reveal that the separator falls short of eliminating all liquid droplets of specified sizes from the gas phase to meet efficiency requirements, weather with or without a mist extractor. Consequently, an analysis of various structural parameters of the vessel is undertaken to determine their impact on the carried-over liquid mass flow rate and the vessel’s gas/liquid efficiency. The findings recommend a new design concept termed the "smart separator" for Bravo #2, applicable to both current and anticipated operational scenarios. The smart separator demonstrates a remarkable enhancement in gas/liquid separation efficiency, showcasing improvements of 21.31% and 24.02% under existing and future operating conditions, respectively. This innovative design proves effective in controlling liquid carry-over and maintaining high-efficiency levels, even as vessel inlet flow rates increase over time, thus preventing foaming phenomena in downstream processes caused carried-over liquids.
This work presents an experimental study of heat transfer and flow of distilled water and metal oxide nanofluid Fe3O4-distilled water at concentrations of (φ = 0.3, 0.6, 0.9 %) by volume in a horizontal pipe with constant magnetic field. All the tests are carried out with Reynolds number range (2900-9820) and uniform heat flux (11262-19562 W/m2). The results show that, the nanofluid concentration and magnetic intensity increase, the Nusselt number increases. The maximum enhancement in Nusselt number with magnetic nanofluid is (5.4 %, 26.4 %, 42.7 %) for volume concentration (0.3, 0.6, 0.9 %) respectively. The enhancement is maximized with magnetic intensity (0.1, 0.2, 0.3 tesla) respectively to (43.9, 44
... Show MoreA numerical investigation has been performed to study the effect of eccentricity on unsteady state, laminar aiding mixed convection in a horizontal concentric and eccentric cylindrical annulus. The outer cylinder was kept at a constant temperature
while the inner cylinder was heated with constant heat flux. The study involved numerical solution of transient momentum (Navier-Stokes) and energy equation using finite difference method (FDM), where the body fitted coordinate system (BFC) was
used to generate the grid mesh for computational plane. The governing equations were transformed to the vorticity-stream function formula as for momentum equations and to the temperature and stream function for energy equation.
A computer progra
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
In this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
The aim of the research is to shed light on the dimensions of the strategic lens and its impact on achieving the pioneer tax performance and represented by the dimensions (strategic direction, growth, pilot indicator, renewal and modernization, efficiency and effectiveness) in the General Tax Authority. The questionnaire was adopted as a tool to collect data and information from the adult sample They are (91) who are on the site (Assistant Director General, Head of Division, First Division Deputy, Second Division Deputy, Division Officer, Division Officer Associate) The statistical program (SPSS) has been used to calculate (the mean, the standard deviation, the correlation coefficient, the difference coefficient, the F test, the
... Show MoreCloud computing offers a new way of service provision by rearranging various resources over the Internet. The most important and popular cloud service is data storage. In order to preserve the privacy of data holders, data are often stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for big data storage and processing in the cloud. Traditional deduplication schemes cannot work on encrypted data. Among these data, digital videos are fairly huge in terms of storage cost and size; and techniques that can help the legal aspects of video owner such as copyright protection and reducing the cloud storage cost and size are always desired. This paper focuses on v
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤