The Khor Mor gas-condensate processing plant in Iraq is currently facing operational challenges due to foaming issues in the sweetening tower caused by high-soluble hydrocarbon liquids entering the tower. The root cause of the problem could be liquid carry-over as the separation vessels within the plant fail to remove liquid droplets from the gas phase. This study employs Aspen HYSYS v.11 software to investigate the performance of the industrial three-phase horizontal separator, Bravo #2, located upstream of the Khor Mor sweetening tower, under both current and future operational conditions. The simulation results, regarding the size distribution of liquid droplets in the gas product and the efficiency gas/liquid separation, reveal that the separator falls short of eliminating all liquid droplets of specified sizes from the gas phase to meet efficiency requirements, weather with or without a mist extractor. Consequently, an analysis of various structural parameters of the vessel is undertaken to determine their impact on the carried-over liquid mass flow rate and the vessel’s gas/liquid efficiency. The findings recommend a new design concept termed the "smart separator" for Bravo #2, applicable to both current and anticipated operational scenarios. The smart separator demonstrates a remarkable enhancement in gas/liquid separation efficiency, showcasing improvements of 21.31% and 24.02% under existing and future operating conditions, respectively. This innovative design proves effective in controlling liquid carry-over and maintaining high-efficiency levels, even as vessel inlet flow rates increase over time, thus preventing foaming phenomena in downstream processes caused carried-over liquids.
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show MoreThe detection of fungi contaminating maize grain and the effect of four plant extracts Azadirachta indica, Eucalyptus globulus Glycyrrhiza glabra and Zingiber officinale on the growth of A. flavus and its ability to produce AflatoxinB1. The results showed that the incidence of Aspergillus spp., was 52.75% of the isolated fungi, of which 29.50% was due to Aspergillus flavus, followed by Penicillium spp., with an incidence of 21.06%, and then Fusarium spp., with a rate of 18.13%. The percentage of toxin-producing A. flavus isolates reached 70.8% out of 24 isolates. The results showed the effect of alcoholic plant extracts at a concentration of 10 mg/ml on the fungal growth activity of A. flavus, the alcoholic extract of neem leaves was superi
... Show MoreThe main parameters and methods influencing the removal of Gentian Violet (GV) dye from aqueous media were investigated using a stachy plant in this study. The surface of the stachy plant was determined using FTIR spectra. Adsorption is influenced by the adsorbent's characteristic groups. The research took into account the usual conditions for GV dye adsorption by the stachy plant, such as the impact of contact time. Mass dosage , after 0.3 g the amount of adsorbed dye declines. Study pH and ionic strength, the results obtained showed that at pH 3 the largest adsorption of (GV) was seen, while at pH 9, the lowest adsorption was observed at 298 K, the adsorption kinetics and equilibrium constants were achieved, and the equilibr
... Show MoreSewage water is a mixture of water and solids added to water for various uses, so it needs to be treated to meet local or global standards for environmentally friendly waste production. The present study aimed to analyze the new Maaymyrh sewage treatment plant's quality parameters statistically at Hilla city. The plant is designed to serve 500,000 populations, and it is operating on a biological treatment method (Activated Sludge Process) with an average wastewater inflow of 107,000m3/day. Wastewater data were collected daily by the Mayoralty of Hilla from November 2019 to June 2020 from the influent and effluent in the (STP) new in Maaymyrh for five water quality standards, such as (BOD5), (COD), (TSS), (TP)
... Show MoreThe aim of the present study is to study the meiobenthic invertebrate's community associated with the aquatic plant Ceratophyllum demersum in Al-Salamiyat irrigation canal / north Baghdad, with the chemical and physical parameters of the canal water, during the study period from September 2015 to May 2016. Two sites were chosen for sample collection, the first site (S1) at the beginning of the canal near it's connection with Tigris river, and the second site (S2) after 10 km from the first site. The chemico-physical analysis results revealed that the water temperature ranged from 10-30oC, and pH values ranged between 6.9-7.8, and the dissolved oxygen concentration and the BOD values from 7.2-9.2 mg/l, and 1.2-5.4 mg/l, respectively. The sal
... Show MoreMost of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The predict