Scientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that CIP biosorption occurred mainly at biomass sites containing carboxyl and amino groups. The equilibrium isotherm data and biosorption kinetics were addressed in the present study. The biosorption data match the Langmuir isotherm model, and the maximal biosorption capacity was determined to be 7.56 mg/g. While The pseudo-second-order model accurately described the biosorption kinetic data. Biosorbent regeneration was also studied using two different sodium hydroxide concentrations, the results showing that after desorption, the biosorption capacity decreased from 5.2 to 3.74 and 1.77 (mg/g) using 0.1NaOH and 0.5NaOH, respectively.
Research includes three axes, the first is the average estimate time of achievement (day) to work oversight, to five supervisory departments in the Office of Financial Supervision Federal and then choose the three control outputs and at the level of each of the five departments above, and after analyzing the data statistically back to us that the distribution of the times of achievement It is the exponential distribution (Exponential Distribution) a parameter (q), and the distribution of normal (Normal Distribution) with two parameters (μ, σ2), and introduced four methods of parameter estimation (q) as well as four modalities parameter to estimate (
... Show MoreTerrorism is a global phenomenon that engulfs most regions of the world to varying degrees. Media outlets are aware of the many incidents of violence and terrorism that have increased in recent times. The differences between the size of the phenomenon in different societies are the causes and severity of the phenomenon. On the role of local satellite channels in shaping the knowledge and trends of the Iraqi public towards the events of terrorism, in light of the assumptions of reliance on the media. The importance of this study is that it assesses the role of local satellite channels in the formation of knowledge and trends The study seeks to know the extent of exposure of the Iraqi public to local satellite channels, and to reveal the e
... Show MoreInvestment drives the wheel of the development of different developed and developing countries. Sudan is a model for a developing country facing a lot of difficulties in the field of both local and foreign investment. The present study was focused on the problem of poor diversification and efficiency of both local and foreign investment in Sudan. Also, it clarified the important role of administrative supervision to strengthen the efficiency of investment, taking the experience of the Sudan as a model. The researchers used the well-known descriptive and analytical tools (questionnaire, interview, observation) to complete this study. A well designed questionnaire was used. It included all questions that could cover all aspects of
... Show MoreThe extraction of Eucalyptus oil from Iraqi Eucalyptus Camadulensis leaves was studded using water distillation methods. The amount of Eucalyptus oil has been determined in a variety of extraction temperature and agitation speed. The effect of water to Eucalyptus leaves (solvent to solid) ratio and particle size of Eucalyptus leaves has been studied in order to evaluate the amount of Eucalyptus oil. The optimum experimental condition for the Eucalyptus oil extraction was established as follows: 100 C extraction temperature, 200 rpm agitation speed; 0.5 cm leave particle size and 6: 1 ml: g amount of water to eucalyptus leaves Ratio.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe development of economic and environmentally friendly extractants to recover cobalt metal is required due to the increasing demand for this metal. In this study, solvent extraction of Co(II) from aqueous solution using a mixture of N,N0-carbonyl difatty amides (CDFAs) synthesised from palm oil as the extractant was carried out. The effects of various parameters such as acid, contact time, extractant concentration, metal ion concentration and stripping agent and the separation of Co(II) from other metal ions such as Fe(II), Ni(II), Zn(III) and Cd(II) were investigated. It was found that the extraction of Co(II) into the organic phase involved the formation of 1:1 complexes. Co(II) was successfully separated from commonly associated metal
... Show MoreSpent hydrodesulfurization (Co-Mo/γ-Al2O3) catalyst generally contains valuable metals like molybdenum (Mo), cobalt (Co), aluminium (Al) on a supporting material, such as γ-Al2O3. In the present study, a two stages alkali/acid leaching process was conducted to study leaching of cobalt, molybdenum and aluminium from Co-Mo/γ-Al2O3 catalyst. The acid leaching of spent catalyst, previously treated by alkali solution to remove molybdenum, yielded a solution rich in cobalt and aluminium.
This work reports the development of an analytical method for the simultaneous analysis of three fluoroquinolones; ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) in soil matrix. The proposed method was performed by using microwave-assisted extraction (MAE), solid-phase extraction (SPE) for samples purification, and finally the pre-concentrated samples were analyzed by HPLC detector. In this study, various organic solvents were tested to extract the test compounds, and the extraction performance was evaluated by testing various parameters including extraction solvent, solvent volume, extraction time, temperature and number of the extraction cycles. The current method showed a good linearity over the concentration ranging from
... Show MoreLiquid-liquid membrane extraction technique, pertraction, using three types of solvents (methyl isobutyl ketone, n-butyl acetate, and n-amyl acetate) was used for recovery of penicillin V from simulated fermentation broth under various operating conditions of pH value (4-6) for feed and (6-8) for receiver phase, time (0-40 min), and agitation speed (300-500 rpm) in a batch laboratory unit system. The optimum conditions for extraction were at pH of 4 for feed, and 8 for receiver phase, rotation speed of 500 rpm, time of 40 min, and solvent of MIBK as membrane, where more than 98% of penicillin was extracted.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More