Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the practical application of bio-based Zinc Oxide nanoparticles (ZnO NPs) prepared chemically from celery leaf plant extract as green additive in water-based mud drilling fluid (WBM). The study aimed to evaluate the filtration and thermal stability of WBM using green-synthesized ZnO NPs. The results showed that the ZnO NPs have minimal effect of mud density, but significant improvement in mud thermal stability and filtration properties were attained with concentrations lower than 1g. The fluid loss rate was reduced by 33% with 0.45g of ZnO nanoparticles, and the thinnest mud cake was obtained as well. In terms of thermal stability, the bio-based ZnO NPs greatly enhanced the rheological properties of WBM at elevated temperatures. The rate of increment in plastic viscosity (PV) or decrement in yield point (YP) and gel strength occurred in a controllable manner compared to the rheological properties of base mud at high temperatures reaching 90°C. This study provides insight into the effect of green-synthesized ZnO nanoparticles on the performance of water-based mud and highlights their potential as an effective and environmentally friendly additive for the oil and gas industry.
Iraq's water crisis represents one of the most pressing environmental and socioeconomic challenges facing the country today. This study examines the evolution of water resource problems in Iraq through a comprehensive historical comparison between the pre-2003 period under Saddam Hussein's regime and the post-2003 era following the U.S.-led invasion and subsequent political transformation. The research employs a mixed-method approach, analyzing quantitative data on water flow rates, infrastructure development, and qualitative assessments of policy impacts across both periods. Key findings reveal that while the pre-2003 period was characterized by deliberate environmental destruction, particularly the draining of the Mesopotamian Marshes, an
... Show MoreAbstract. In this research, the uranium concentration in (16) water samples collected from some agricultural areas surrounded with AlTuwitha nuclear site in Baghdad-Iraq was measured by using a CR-39 detector. The concentration of uranium in this study was from (0.6 ± 0.33mg/l) to (2.51 ± 0.49 mg/l), and the weighted average for the concentrations (1.262 ± 0.402 mg/l). The results showed it is a concentration of uranium level in water samples studied is higher than the allowed limit recommended by WHO and ICRP.
Abstract Rasha Hameid Jehad Baghdad University Background: The high reactivity of hydrogen peroxide used in bleaching agents have raised important questions on their potential adverse effects on physical properties of restorative materials. The purpose of this in vitro study was to evaluate the effect of in-office bleaching agents on the microhardness of a new Silorane-based restorative material in comparison to methacrylate-based restorative material. Materials and method: Forty specimens of Filtek™ P90 (3M ESPE,USA) and Filtek™ Supreme XT (3M ESPE, USA) of (8mm diameter and 3m height) were prepared. All specimens were polished with Sof-Lex disks (3M ESPE, USA). All samples were rinsed and stored in incubator 37˚C for 24 ho
... Show MoreToday technology using nanoparticle when treatment pathogentic microorganism and we focused on this here. It was found that the species of streptococcus used in present study were sensitive to erythromycin. In present study focusing biofilm formation by Streptococcus spp was evaluated. Species S. mutans was found that highest amount of biofilm compare with the other species. The aim of report effect (SNPs) on ability of biofilm form different species of streptococcus. The anti-biofilm effect of SNPs was in concentration dependent manner. The highest effect of SNP against biofilm formation was found the concentration 160 μg/ml, while the lowest effect was found the lowest used concentration (80 μg/ml) of SNPs. In vivo study revealed that s
... Show More
Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie
... Show MoreThis study investigated the impact of lime stabilization on the fate and transformation of AgNPs. It also evaluated the changes in the population and diversity of the five most relevant bacterial phyla in soil after applying lime-stabilized sludge containing AgNPs. The study was performed by spiking an environmentally relevant concentration of AgNPs (2 mg AgNPs/g TS) in sludge, applying lime stabilization to increase pH to above 12 for two hours, and applying lime-treated sludge to soil samples. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the morphological and compositional changes of AgNPs during lime stabilization. After the application of lime stabilized sludge to
... Show MoreMost dental works require a diagnostic impression; alginate is contemplated as the most popular material used for this purpose. Titanium dioxide nanoparticles show evidence of antimicrobial activity in the recent era, for this purpose, this study aimed to evaluate the effect of adding Titanium dioxide nanoparticles on antimicrobial activity and surface detail reproduction of alginate impression material. Materials and methods: Titanium dioxide nanoparticles (purity = 99%, size= 20nm) was added to alginate at three different concentrations (2%, 3% and 5%). 84 samples were prepared in total. Samples were tested for antimicrobial activity using a disc diffusion test, and surface detail reproduction was done using (ISO 21563:2021). One-way A
... Show MoreIn this research, A thin film of Rhodamine B dye and TiO2 Nanoparticles doped in PMMA Polymer has been prepared by a casting method. The sample was spectrum absorption by UV-Vis. The nonlinear optical properties were measured by Z- scan technique using Nd:YAG laser with (1064 nm) wavelength. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) were estimated for the thin film for different energies of the laser, n2 and β were decreased with increasing intensity of incident laser beam. Also, the type of β was two-photon absorption and n2 negative nonlinear reflective.