The economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various deposited oxide was characterized by energy dispersive X-ray spectroscopy (EDX). The study also highlighted the effect of current density (40, 60, and 80 mA/cm2), pH (3, 4, and 5), and the concentration of NaCl (1, 1.5, and 2 g/l) on the anodic electro-oxidation of phenol was investigated. The results revealed that the composite anodes are successfully prepared galvanostatically by anodic and cathodic deposition. In addition, the current density of 25 mA/cm2 gave the best cathodic deposition performance. The removal efficiency of phenol and other by-products increased as the current density and the concentration of NaCl in the electrolyte increased, while it decreased as the pH increased. The prepared composite electrode gave high COD removal efficiency (98.769 %) at the current density of 80 mA/cm2, pH= 3, NaCl conc. of 2 g/L within 3 h.
The performance of a synergistic combination of electrocoagulation (EC) and electro-oxidation (EO) for oilfield wastewater treatment has been studied. The effect of operative variables such as current density, pH, and electrolyte concentration on the reduction of chemical oxygen demand (COD) was studied and optimized based on Response Surface Methodology (RSM). The results showed that the current density had the highest impact on the COD removal with a contribution of 64.07% while pH, NaCl addition and other interactions affects account for only 34.67%. The optimized operating parameters were a current density of 26.77 mA/cm2 and a pH of 7.6 with no addition of NaCl which results in a COD removal efficiency of 93.43% and a specific energy c
... Show MoreElectrocoagulation is an electrochemical process of treating polluted water where sacrificial anode corrodes to produce active coagulant (usually aluminum or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles). The present study investigates the removal of phenol from water by this method. A glass tank with 1 liter volume and two electrodes were used to perform the experiments. The electrode connected to a D.C. power supply. The effect of various factors on the removal of phenol (initial phenol concentration, electrode size, electrodes gab, current density, pH and treatment time) were studied. The results indicated that the removal efficiency decreased as initial phenol concentration
... Show MoreHeavy metal ion removal from industrial wastewater treatment systems is still difficult because it contains organic contaminants. In this study, functional composite hydrogels with photo Fenton reaction activity were used to decompose organic contaminants. Fe3O4 Nanoparticle, chitosan (CS), and other materials make up the hydrogel. There are different factors that affected Photo-Fenton activity including (pH, H2O2 conc., temp., and exposure period). Atomic force microscopy was used to examine the morphology of the composite and its average diameter (AFM). After 60 minutes of exposure to UV radiation, CS/ Fe3O4 hydrogel composite had degraded methylene blue (M.B.)
... Show MoreIn this study, oxidative desulfurization of dibenzothiophene (DBT) with H2O2 as an oxidant was studied, whereas the catalyst used was zirconium oxide supported on Activated carbon (AC). Zirconium oxide (ZrO2) was impregnated over prepared activated carbon (AC) and characterized by various techniques such as XRD, FTIR, BET, SEM, and EDX. This composite was used as a heterogeneous catalyst for oxidation desulfurization of simulated oil. The results of this study showed that ZrO2/AC composite exhibited significant catalytic activity and stability, effectively lowering sulfur content under mild conditions. Factors such as reaction temperature (30, 40, 50, 60°C), time (5, 10, 15,20,30,60, 80 100 min), catalyst dose (0.3, 0.5,
... Show MoreABSTRACT
Naproxen(NPX) imprinted liquid electrodes of polymers are built using polymerization precipitation. The molecularly imprinted (MIP) and non imprinted (NIP) polymers were synthesized using NPX as a template. In the polymerization precipitation involved, styrene(STY) was used as monomer, N,N-methylenediacrylamide (N,N-MDAM) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The molecularly imprinted membranes and the non-imprinted membranes were prepared using acetophenone(AOPH) and di octylphathalate(DOP)as plasticizers in PVC matrix. The slopes and detection limits of the liquid electrodes ranged from)-18.1,-17.72 (mV/decade and )4.0 x 10-
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o
This research is devoted to design and implement a Supervisory Control and Data Acquisition system (SCADA) for monitoring and controlling the corrosion of a carbon steel pipe buried in soil. A smart technique equipped with a microcontroller, a collection of sensors and a communication system was applied to monitor and control the operation of an ICCP process for a carbon steel pipe. The integration of the built hardware, LabVIEW graphical programming and PC interface produces an effective SCADA system for two types of control namely: a Proportional Integral Derivative (PID) that supports a closed loop, and a traditional open loop control. Through this work, under environmental temperature of 30°C, an evaluation and comparison were done for
... Show MoreIn this study, the preparation and characterization of hyacinth plant /chitosan composite, as a heavy metal removal, were done. Water hyacinth plant (Eichhorniacrasspes) was collected from Tigris river in Baghdad. The root and shoot parts of plant were ground to powder. Composite materials were prepared at different ratios of plant part (from 2.9% to 30.3%, wt /wt) which corresponds to (30-500mg) of hyacinth plant (root and shoot) and chitosan. The results showed that all examined ratios of plant parts have an excellent absorption to copper (Cu (II)). Moreover, it was observed that 2.9% corresponds (30mg) of plant root revealed highest removal (82.7%) of Pb (II), while 20.23% of shoot removed 61% of Cd (II) within 24 hr
... Show More