Silica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review, the major applications of the Mobil Mesoporous Molecular Sieves family, such as catalysts, adsorbents, and drug delivery agents, have been surveyed. Furthermore, the synthesis of the Mesoporous Molecular Sieves materials, the silica sources, the importance of templates, and the mechanisms of the synthesis are discussed herein. Members of this material family are characterized by many physicochemical properties that are closely related to their high silica content, crystalline structure, and pore arrangement. Commonly, the members of this family have large surface areas, high pore volumes, small pore sizes, and narrow and uniform particle size distributions. These properties enable numerous industrial applications and opportunities for scientific studies to further develop existing materials or manufacture new ones.
The internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show MoreMulti-carrier direct sequence code division multiple access (MC-DS-CDMA) has emerged recently as a promising candidate for the next generation broadband mobile networks. Multipath fading channels have a severe effect on the performance of wireless communication systems even those systems that exhibit efficient bandwidth, like orthogonal frequency division multiplexing (OFDM) and MC-DS-CDMA; there is always a need for developments in the realisation of these systems as well as efficient channel estimation and equalisation methods to enable these systems to reach their maximum performance. A novel MC-DS-CDMA transceiver based on the Radon-based OFDM, which was recently proposed as a new technique in the realisation of OFDM systems, will be us
... Show MoreIn this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra.
The new Schiff base (L) “4‐[(2,4‐dimethoxy‐benzylidene)‐amino]‐1,5‐dimethyl‐2‐phenyl‐1,2‐dihydro‐pyrazol‐3‐one” was synthesized from 2,4‐dimethoxy‐benzaldehyde and 4‐amino‐1,5‐dimethyl‐2‐phenyl‐1,2‐dihydropyrazol‐3‐one, and the geometry of Schiff base was characterized and determined by proton nuclear magnetic resonance (1H‐NMR), mass, Fourier transform infrared (FT‐IR), and ultraviolet‐visible (UV‐vis) spectroscopy. Schiff complexes of Ni(II), Pd(II), Pt(IV), Zn(II), Cd(II), and Mg(II) have been prepared by reaction of ion metals with as‐prepared Schiff base. The results showed that synthesized complexes offered 1:2 m
Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
Liquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show More