Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by response surface methodology (RSM). According to the results, nickel foam made an excellent choice as cathode material. The pH value was adjusted at 3 and the airflow at 10 L/h for all experiments. It was found that the optimal conditions were current density of 4.23 mA/cm2, Fe2+ dosage of 0.1 mM, and time of 5 h to obtain the removal rates of phenol and chemical oxygen demand (COD) of 81.335% and 79.1%, respectively. The results indicated that time had the highest effect on the phenol and COD removal efficiencies, while the impact of current density was the lowest. The high R2 value of the model equation (98.03%) confirmed its suitability.
Biomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show MoreThis study comprised three traverses extending parallel through the Northern, Central and Southern Mahmudiya districts, and perpendicular to the course of the Euphrates River. They were identified to collect (15) soil samples and some water samples as distributed within the land cover classes of the study area. Those classes were determined by visual interpretation and supervised classification for Landsat (TM) images obtained in August/2007. The digital classification was based on Maximum Likelihood method using six spectral bands excluding the thermal band. Chemical and physical laboratory analysis for the soil characteristics was performed to determine the types of land degradation in the study area.
The results showed that the hig
The body has the ability to effect the audience in the the theatrical show , since he or she is transmitter , sender , seen and viewer of the humanitarian discourse as well the the images and connotations of the theatrical show, it is a tool of communication that substitutes for millions of spoken words, the modern schools of direction focused on the body language of the actor and gave it prominence in depicting facts by different connotations. The researcher studies the physical performance of the actor throughout focusing on the connotational dimensions of the body within the theatrical show , as well as the positioning of performative body within the modern schools of direction depending on the theatrical show (Rebuke ) of the Iraqi d
... Show MoreSignificant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the
The present investigation is concerned for the purification of impure zinc oxide (80-85 wt %) by using petroleum coke
(carbon content is 76 wt %) as reducing agent for the impure zinc oxide to provide pure zinc vapor, which will be
oxidized later by air to the pure zinc oxide.
The operating conditions of the reaction were studied in detail which are, reaction time within the range (10 to 30 min),
reaction temperature (900 to 1100 oC), air flow rate (0.2 to 1 l/min) and weight percentage of the reducing agent
(petroleum coke) in the feed (14 to 30 wt %).
The best operating conditions were (30 min) for the reaction time, (1100 oC) for the reaction temperature, (1 l/min) for
the air flow rate, and (30 wt %) of reducing
The simple and available technique of colorimetry and indirect X-ray fluorescence determination of tetracycline hydrochloride (in the form of colored complex with iron(III) ions) and cyanocobalamine (in the form of the colored thiocyanate complex with cobalt(II) ions) is offered. The analytes were separated from the accompanying components by sorption to polyurethane foam based on ethers. The conditions of sorption separation and measurement of analytical signal of these substances are optimized. The obtained results of tetracycline drugs and injection solution B12 vitamin are in satisfactory agreement with data declared by the manufacturer.
Mechanical degradation hampers the practical usage of polymers for turbulent drag reduction
application. Mechanical degradation refers to the chemical process in which the activation energy of
polymer chain scission is exceeded by mechanical action on the polymer chain, and bond rupture
occurs. When a water-soluble polymer and surfactant are mixed in water solution, the specific structures
(aggregates) are formed, in which polymer film is formed around micelle. In this work, Xanthan gum (XG) –
Sodium lauryl ether sulfate (SELS) complex formation and its effect on percentage viscosity reduction
(%VR) was studied. It was found that SELS surfactant reduced the mechanical degradation of XG much
more efficiently than th
In this study an experimental work was done to study the possibility of using aluminum rubbish material as a coagulant to remove the colloidal particles from oily wastewater by dissolving this rubbish in sodium hydroxide solution. The experiments were carried out on simulated oily wastewater that was prepared at different oil concentrations and hardness levels (50, 250, 500, and 1000) ppm oil for (2000, 2500, 3000, and 3500) ppm CaCo3 respectively. The initial turbidity values were (203, 290, 770, and 1306) NTU, while the minimum values of turbidity that have been gained from the experiments in NTU units were (1.67, 1.95, 2.10, and 4.01) at best sodium aluminate dosages in milliliters (12, 20, 24, and 28) for
... Show More