The addition of new reactive sites on the surface area of the inert sand, which are represented by layered double hydroxide nanoparticles, is the primary goal of this work, which aims to transform the sand into a reactive material. Cetyltrimethylammonium bromide (CTAB) surfactant is used in the reaction of calcium extracted from solid waste-chicken eggshells with aluminum prepared from the cheapest coagulant-alum. By separating amoxicillin from wastewater, the performance of coated sand named as "sand coated with (Ca/Al-CTAB)-LDH" was evaluated. Measurements demonstrated that pH of 12 from 8, 9, 10, 11, and 12, CTAB dosage of 0.05 g from 0, 0.03, 0.05, and 0.1 g, ratio of Ca/Al of 2 from 1, 2, 3, and 4, and mass of sand of 1 g/50 mL from 0.5, 1, 1.5, 2, and 2.5 g/50 mL are the optimal manufacturing conditions for coated sand to guarantee an antibiotic removal efficiency greater than 80. After planting the LDH nanoparticles, characterization analyses revealed that the generation of a plate-like layer composed of loosely aggregated micrometric plates had significantly altered the structure of sand. Finally, as the sorbent mass increased as well as the flow rate and inlet contaminant concentration (Co) decreased, the longevity of coated sand in the packed column significantly increased. In comparison to the Belter-Cussler-Hu and Yan models, the Thomas-BDST model provides a more accurate simulation of measured breakthrough curves.
Lactococcus lactis ssp. lactis isolated from raw milk was used for titanium dioxide (TiO2) nanoparticles biosynthesis. Biosynthesized TiO2 nanoparticles were characterized using UV-vis spectroscopy, Atomic Force Microscopy (AFM) (1.97 nm), X-ray diffraction (XRD) appa-ratus, Field Emission Scanning Electron Microscopy (FE-SEM), Energy dispersive X-ray anal-ysis (EDX) spectra and Fourier Transform Infrared Spectroscopy (FTIR). Result was 408.21 cm-1 that belong to anatase Titania. L. lactis ssp. Lactis isolates had the ability to synthesize TiO2 nanoparticles, the characterization results presented that the biosynthesized nanoparti-cles were at wavelength (344-347) nm; approving the formation of anatase phase of TiO2 NPs; spherical c
... Show MoreCapacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level. Whil
... Show MoreThe green production of iron oxide nanoparticles (FeONPs) due to its numerous biotechnological uses has attracted a lot of attention and clean and eco-friendly approaches in the medical field.
The objectives of this study are to demonstrate the biogenic creation of FeONPs. The search for alternative antimicrobial medicines has been prompted by growing worries about multidrug resistance.
In this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreThis study employed the biosynthetic technique for creating vanadium nanoparticles (VNPs), which are affordable and user-friendly; VNPs was synthesized using vanadium sulfate (VOSO4.H2O) and a plant extract derived from Fumaria Strumii Opiz (E2) at a NaOH concentration of 0.1 M. This study aims to investigate the potential applications of utilizing an adsorbent for metal ions to achieve environmentally friendly production and assess its antibacterial activity and cytotoxicity. The reaction was conducted in an alkaline environment with a pH range of 8–12. The resulting product was subjected to various characterization techniques, including Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, x-ray diffraction (XRD), t
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomi
... Show MoreThe optimum conditions for production of fibrinolytic protease from an edible mushroom Pleurotus ostreatus grown on the solid medium , Sus medium, composed of Sus wastes (produced from extracted medicinal plant Glycyrrhiza glabra) were determined. Addition of 5% of Soya bean seeds meal in Sus medium recorded a maximum fibrinolytic protease activity resulting in 7.7 units / ml. The optimum moisture content of Sus medium supplemented with 5% Soya bean seeds meal was 60% resulting in 7.2 units / ml.Pleurotus ostreatus produced a maximum fibrinolytic protease activity when the spawn rate,pH of medium and incubation temperature were 2,6 and 30°C, respectively. The maximum fibrinolytic protease activity was 7.6 units / ml when incubat
... Show MoreIn this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.