Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at different conditions. In addition, contact angle measurements on quartz surfaces were also conducted at similar conditions to understand the flow behavior in the porous media. Further, zeta potential and particle size distribution measurements were conducted to examine the stability of the injected nanofluids. Results revealed that the injection of nanofluids into oil-wet pore space can significantly enhance the recovery rate of hydrocarbon by altering the wettability of the porous media. However, salinity, particularly at high nanoparticles concentration (≥ 0.005) can dramatically reduce the efficiency of nanofluid. Further, increased aging time can improve the ability of nanofluid to alter the wettability of the surface, and thus more oil can be displaced. Thus, nanofluid can efficiently enhance oil recovery if correctly formulated.
Introduction: The present study was performed to evaluate the influence of a 1064 nm fiber laser on shear bond strength (SBS) at the interface of titanium and resin cement. Methods: Forty titanium discs of 6 mm × 3 mm (diameter and thickness respectively) were categorized into four groups (n=10): control group without any surface treatment and three groups treated with a fiber laser with 81 ns pulse duration, 30 kHz frequency, 10000 mm/s scanning speed, 0.05 mm spot size, and different average power values (3, 5 and 7 W) depending on the tested group. Titanium disc characterization was performed by the scanning electron microscope (SEM) and surface roughness tester. Phase analysis was achieved using an X-ray diffractometer (XRD). F
... Show MoreThe construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical prop
... Show MoreThe influence of fear on the dynamics of harvested prey-predator model with intra-specific competition is suggested and studied, where the fear effect from the predation causes decreases of growth rate of prey. We suppose that the predator attacks the prey under the Holling type IV functional response. he existence of the solution is investigated and the bounded-ness of the solution is studied too. In addition, the dynamical behavior of the system is established locally and globally. Furthermore, the persistence conditions are investigated. Finally, numerical analysis of the system is carried out.
Polymer matrix composites are suitable materials for medical applications, such as denture base resin polymethyl methacrylate (PMMA). This includes light weight and high strength. This paper describes the effect of selected weight fractions (1, 2, 3, 4 & 5) % wt of nano(Alumina AL2O3, Zirconia ZrO2, Hydroxyapatite HA and Halloysite nanoClay) reinforcements on the biopolymer matrix (PMMA). Some tribology tests were used to evaluate the prepared system (impact strength, hardness surface, and wear rate) tests. The samples were fabricated by (Hand Lay-Up) with different particle reinforcement percentages. All tests were accomplished at room temperature, and samples were developed according to the ASTM standard. The weight fraction of (4% for AL
... Show MoreThree new polyphosphates were synthesized in good yields by reacting diethylenetriamine with the appropriate phosphate ester in ethanol under acidic conditions. The polyphosphate structures were determined using FT-IR and 1H-NMR spectroscopies, and their elemental compositions were confirmed by EDX spectroscopy. Polyphosphates were added to poly(vinyl chloride) (PVC) at low concentrations to fabricate thin films. The PVC films were irradiated with ultraviolet light for long periods, and the effect of polyphosphates as the photostabilizer was investigated by determining changes in the infrared spectra (intensity of specific functional group peaks), reduction in molecular weight, weight loss, and surface morphology. Minimal changes we
... Show MoreBackground: Ceramic veneers represent the treatment of choice in minimally invasive esthetic dentistry; one of the critical factors in their long term success is marginal adaptation. The aim of the present study is to evaluate the marginal gap of ceramic veneers by using two different fabrication techniques and two different designs of preparation. Material and methods: A typodont maxillary central incisor used in the preparation from which metal dies were fabricated, which were in turn used to make forty stone dies. The dies divided into four experimental groups, each group had ten samples: A1: prepared with butt-joint incisal reduction and restored with IPS e.max CAD, A2: prepared with overlapped incisal reduction and restored with IPS e.
... Show MoreBackground: The marginal adaptation has a key role in the success and longevity of the fixed dental restoration, which is affected by the impression and the fabrication techniques .The objective of this in vitro study was to evaluate and compare the marginal fitness of lithium disilicate crowns using two different digital impression techniques (direct and indirect techniques) and two different fabrication techniques (CAD/CAM and Press techniques). Materials and Methods: Thirty two sound upper first premolar teeth of comparable size extracted for orthodontic reason were selected in this study .Standardized preparation of all teeth samples were carried out with modified dental surveyor to receive all ceramic crown restoration with 1 mm deep
... Show MoreThe research is an attempt to investigate experimentally the influence of teacher’s errors correction and students’ errors correction on teaching English at the College of Physical Education for Women. Errors are seen as a natural way for developing any language but teachers are puzzled the way they can correct these errors. So, this research gives some idea of using two types of errors correction. The sample of the research is female students of the first year stage at the College of Physical Education for Women of the academic year 2009-2010. The whole population of the research is (94) students while the sample is (64). Thus, the sample represents 68% from the population of the research. The sample represents It is hypothesized th
... Show More