Hydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at different conditions. In addition, contact angle measurements on quartz surfaces were also conducted at similar conditions to understand the flow behavior in the porous media. Further, zeta potential and particle size distribution measurements were conducted to examine the stability of the injected nanofluids. Results revealed that the injection of nanofluids into oil-wet pore space can significantly enhance the recovery rate of hydrocarbon by altering the wettability of the porous media. However, salinity, particularly at high nanoparticles concentration (≥ 0.005) can dramatically reduce the efficiency of nanofluid. Further, increased aging time can improve the ability of nanofluid to alter the wettability of the surface, and thus more oil can be displaced. Thus, nanofluid can efficiently enhance oil recovery if correctly formulated.
To assess the contribution of Doppler broadening and examine the
Compton profile, the Compton energy absorption cross sections are
measured and calculated using formulas based on a relativistic
impulse approximation. The Compton energy-absorption cross
sections are evaluated for different elements (Fe, Zn, Ag, Au and Hg)
and for a photon energy range (1 - 100 keV). With using these crosssections,
the Compton component of the mass–energy absorption
coefficient was derived, where the electron momentum prior to the
scattering event caused a Doppler broadening of the Compton line.
Also, the momentum resolution function was evaluated in terms of
incident and scattered photon energy and scattering angle. The res
In this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreThe study discussed here deals with the isolation of Aspergillus niger from palm dates, the formal and the most famous fruit in Iraq, to test and qualify this fungus isolate for its ability to produce citric acid. Submerged fermentation technique was used in the fermentation process. A.niger isolated from “Zahdi” Palme dates was used in the study of the fermentation kinetics to get the production efficiency of citric acid. Kinetics of CA production via fermentation by A. niger S11 was evaluated within 432 h fermentation time and under submerged conditions of 11% (w/v) sucrose, 5% (v/v) inoculum size, pH 4, 30 °C and 150 rpm. The maximum citric acid produced was (37.116 g/l). Kine
This experiment presented essential oils by GC/MS, pigment content, and their antioxidant activities as well as sensory evaluation of delight samples. Limonene (66.88%) was the most prevalent yield. The peels of clementine had DPPH and ABT Scavenging activity. All levels of pigment extract had better scores for all sensory values and recorded acceptable scores in terms of appearance, color, aroma, and overall acceptability compared to control delight. Besides, delight samples containing 15 mg astaxanthin pigment extract showed maximum sensory scores compared to other samples and control delight. On the other hand, the product was less acceptable to the panelists compared to control in the case of the addition of 3.75 mg astaxanthin pigme
... Show More5-Fluorouracil is one of the commonly used chemotherapy drugs in anticancer therapy; unfortunately treatment with 5-FU by solely has many drawbacks low lipophilicity, low permeability, low molecular weight, and its relatively poor plasma protein binding; also a brief half-life therefore frequent administration is required to maintain the optimal therapeutic plasma level which in addition to its poor selectivity, drug resistance and limited penetration to cancer cells; leads to increased incidence of side-effects to healthy cells/tissues and low response rates. In order to minimize these drawbacks; 5-FU was chemically conjugated with pyrrolidine dithiocarbamate (PDTC) in a mutual prodrug moiety (S-(9H-purin-6-yl) 3-(
... Show More