In cooling water systems, cooling towers play a critical role in removing heat from the water. Cooling water systems are commonly used in industry to dispose the waste heat. An upward spray cooling water systems was especially designed and investigated in this work. The effect of two nanofluids (Al2O3/ water, black carbon /water) on velocity and temperature distributions along reverse spray cooling tower at various concentrations (0.02, 0.08, 0.1, 0.15, and 0.2 wt.%) were investigated, beside the effect of the inlet water temperature (35 ,40, and 45 ͦ C) and water to air flow ratio (L/G) of 0.5, 0.75, and 1. The best thermal performance was found when the working solution contained 0.1 wt.% for each of Al2O3 and black carbon nanoparticles, with a maximum drop in temperature drops (i, e. range) of (16 ͦ C) and (20 ͦ C), respectively. The temperature of the tower's outlet water was decreased as the inlet working fluid increased, and the thermal efficiency declined with the increasing of the L/G by about 5%. However, the drop in the outlet temperature caused by the nanofluid is more than that of pure water at every point by about 6 ͦ C.
In solar-thermal adsorption/desorption processes, it is not always possible to preserve equal operating times for the adsorption/desorption modes due to the fluctuating supply nature of the source which largely affects the system’s operating conditions. This paper seeks to examine the impact of adopting unequal adsorption/desorption times on the entire cooling performance of solar adsorption systems. A cooling system with silica gel–water as adsorbent-adsorbate pair has been built and tested under the climatic condition of Iraq. A mathematical model has been established to predict the system performance, and the results are successfully validated via the experimental findings. The results show that, the system can be operational
... Show MoreThe modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensif
... Show MoreCorrosion rate tests were carried out on carbon steel under concentration cells conditions of oxygen and sodium chloride. The effect of aeration in one compartment on the corrosion rate of both coupled metals was determined. In addition, the effects of time and temperatures on the corrosion rate of both coupled metals and galvanic currents between them were investigated. Corrosion potentials for the whole range of operating conditions under concentration cell conditions were also studied. The results showed that under aeration condition, the formation of concentration cell caused a considerable corrosion rate of the Carbon steel specimens coupled in different concentrations of O2 and NaCl due to the galvanic effect
... Show MoreCarbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
The current research aims to diagnose the nature of the relation between dynamic capabilities as an independent variable and competitive advantage as a respondent variable, and identify the role of each of them in achieving the required performance of the organizations and adapt to the rapid environmental changes. The research was applied to the Iraqi Cement State Company one of the formations of the Iraqi Ministry of Industry and Minerals, and based on the importance of the subject matter of the research and the importance of the research sample and company of inquiry, The researcher adopted the descriptive analytical method in completing his research. The sample of the research was Intention
... Show MoreBackground: The PMMA polymer denture base materials are low in thermal and strength properties. The aim of the study was to investigate the change in glass transition temperature, E-Moudulus and coefficient of thermal expansion of acrylic denture base material by addition of Al2O3, TiO2 and SiO2nano-fillers in 5% by weight. Materials and methods: The type of polymerization is free radical bulk polymerization. one hundred twenty (120) specimens were prepared , the specimens were divided into four groups according to the material had been added (one control and three for Al2O3, TiO2 and SiO2nanocomposite) each group was subdivided in to three groups according to the test had been done on it, the degree of transition (Tg) was measured by The d
... Show MoreThe research aims to review the concepts of banking efficiency and its relationship to performance, productivity and efficiency, as well as analyze the efficiency of the banking in micro-economic view.
In order to achieve the objectives of the research We have been employed graphic, Econometrics and Mathematical methods to derive the different concepts of banking efficiency.
We showed that there are two main methods used to measure the bank efficiency, the first called Stochastic Frontier Analysis , this technique depends on the parametric methods, The other method is called Data Envelopment Analysis is based on mathematical programming methods
In this work, chemical and thermal treatment were used to enhance silica extract on the purity of rice husk and to reduce the impurities associated with the extraction of silica. The thermal degradation of rice husk was studied. The characteristics and thermal degradation behavior of rice husk which investigated using thermogravimetric analyzer (TGA). Hydrochloric acid was used to soak the rice husk and the study of leaching influence is followed by XRF tests for samples before and after the combustion process. Acid treatment and combustion method seem to have a clear effect on silica purity. The pyrolysis processes were carried out at Laboratory temperature up to 650 oC in the presence of nitrogen gas flowing at 150 ml/min. The effect o
... Show More