This study investigated the impact of lime stabilization on the fate and transformation of AgNPs. It also evaluated the changes in the population and diversity of the five most relevant bacterial phyla in soil after applying lime-stabilized sludge containing AgNPs. The study was performed by spiking an environmentally relevant concentration of AgNPs (2 mg AgNPs/g TS) in sludge, applying lime stabilization to increase pH to above 12 for two hours, and applying lime-treated sludge to soil samples. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) were used to investigate the morphological and compositional changes of AgNPs during lime stabilization. After the application of lime stabilized sludge to the soil, soil samples were periodically analyzed for total genomic DNA and changes in bacterial phyla diversity using quantitative polymerase chain reaction (qPCR). The results showed that lime treatment effectively removed AgNPs from the aqueous phase, and AgNPs were deposited on the lime molecules. The results revealed that AgNPs did not significantly impact the presence and diversity of the assessed phyla in the soil. However, lime stabilized sludge with AgNPs affected the abundance of each phylum over time. No significant effects on the soil total organic carbon (TOC), heterotrophic plate count (HPC), and percentage of the live cells were observed.
The preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of sp
... Show MoreThis study aims to establish an empirical correlation between biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) of the sewage flowing in Al-Diwaniyah wastewater treatment plant. The strength of the wastewater entering the plant varied from medium to high. High concentrations of BOD5 and COD in the effluent were obtained due to the poor performance of the plant. This was observed from the BOD5 /COD ratios that did not confirm with the typical ratios for the treated sewage. To improve the performance of this plant, regression equations for BOD5 and COD removal percentages were suggested which can be used to facilitate rapid effluent assessment or optimal process control. The equations relating the percentage removal of
... Show MoreThe current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless steel
... Show MoreThe current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless st
... Show MoreActive learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis
... Show MoreThe present study investigates the application of a combined electrocoagulation-electrooxidation (EC-EO) process for the treatment of wastewater generated from Al-Dewaniya petroleum refinery plant in Iraq. The EC-EO process was examined in terms of its ability to simultaneously produce coagulant and oxidant agents by using a parallel plate configuration system composed of stainless steel plates as cathode and pair of aluminum and graphite plates as anode at two different current concentrations (1.92A/l and 0.96A/l). The results showed that the best conditions for treatment of Al-Dewaniya petroleum refinery wastewater using the combined approach were current concentration of (0.96A/l), current density
The objective of this article is to study the impact of environmental pollution on air, water, and soil quality with a focus on the role of environmental bacteria in bioremediation of pollutants. The research also addresses the ability of some strains of bacteria to remove heavy metals and petroleum hydrocarbons and degrade toxic substances, resulting in improved environmental quality. Outcomes: Empirical studies reveal that environmental pollution leads to significant health and environmental problems, such as a rise in respiratory disease as a result of air pollution, water pollution that affects aquatic life, and soil pollution that decreases crop output. Other bacterial strains such as Pseudomonas, Bacillus, and Streptomyces have also b
... Show More