This work intends to develop an effective heavy metal-free modifier having properties comparable to traditional stabilizers and flame retardants, simultaneously being environmentally friendly and may be superior in many aspects. The important requirement focused on is: how to increase thermal stability and flame retardancy of flexible poly(vinyl chloride). Due to the typical materials now used with poly(vinyl chloride), which increases health and environmental concerns, utilizing a novel heavy metal-free additive will make poly(vinyl chloride) substantially safer. We have used an artificial silicate for this aim, which proved to be an efficient flame retardant and surprisingly showed excellent heat stabilizing effect. Thermal stability of flexible poly(vinyl chloride) was tested by both discoloration and hydrochloric-acid release methods. Fire properties were tested by limiting oxygen index (L.O.I) method. And penetration resistance of poly(vinyl chloride) has been tested by vicat test. The improvement rate in the thermal stability time during the dehydrochlorination test was 110.7% at 160°C and 90.1% at 180°C. Also, the improvement rate in the L.O.I test was 22.2%, which increased from 21.6% for the poly(vinyl chloride) to 26.4% when 5wt.% of artificial silicate was added. The artificial silicate also increases the thermal stability of the poly(vinyl chloride) and maintains its appearance of more saturated chromatic saturated (brighter). In addition, artificial silicate increases the resistance to hot penetration of poly(vinyl chloride). Where the resistance of poly(vinyl chloride) increased by 8.9% after adding 5wt.% of artificial silicate.
This research aims to develop new spectrophotometric analytical method to determine drug compound Salbutamol by reaction it with ferric chloride in presence potassium ferricyanide in acid median to formation of Prussian blue complex to determine it by uv-vis spectrophotmetric at wavelengths rang(700-750)nm . Study the optimal experimental condition for determination drug and found the follows: 1- Volume of(10M) H2SO4 to determine of drug is 1.5 ml . 2- Volume and concentration of K3Fe(CN)6 is 1.5 ml ,0.2% . 3- Volume and concentration of FeCl3 is 2.5ml , 0.2%. 4- Temperature has been found 80 . 5- Reaction time is 15 minute . 6- Order of addition is (drug + K3Fe(CN)6+ FeCl3 + acid) . Concentration rang (0.025-5 ppm) , limit detecti
... Show MoreMeasuring the efficiency of postgraduate and undergraduate programs is one of the essential elements in educational process. In this study, colleges of Baghdad University and data for the academic year (2011-2012) have been chosen to measure the relative efficiencies of postgraduate and undergraduate programs in terms of their inputs and outputs. A relevant method to conduct the analysis of this data is Data Envelopment Analysis (DEA). The effect of academic staff to the number of enrolled and alumni students to the postgraduate and undergraduate programs are the main focus of the study.
In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.
Free radicals are small extremely reactive species that have unpaired electrons. Free radicals include subgroups of reactive species, which are all a product of regular cellular metabolism. Oxidative stress happens when the free radicals production exceeds the capacity of the antioxidant system in the body’s cells.
The current review clarifies the prospective role of antioxidants in the inhibition and healing of diseases.
Information on oxidative stress, free radicals, reactive oxidant species, and natural and synthetic antioxidants was obta
The research work involve preparation of activated carbon from Plant corn grain dry in the presence of some additive Residual of poly ethelenetereaphthalate.and the anather way Carbonization was conducted by mixing a known weight of the feedstock with variable quantity of the additive and fixed ratio of Potassium hydroxide. Carbonization completed using fusion in solid state in the absence of solvents. Feedstock and mainly Remnants of poly ethelenetereaphthalate were decompose thermally in a Small chains containing to naphthoxide radicals, these radicals can be connected with the Chains of activated carbon aiming to increase polarity ,This was found from the reaction it self . this research has been studying the product sample was eva
... Show MoreWith the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil’s mutual displacement and coupling coef
... Show MoreIn this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate
... Show MoreDue to the remarkable progress in photovoltaic technology, enhancing efficiency and minimized the costs have emerged as global challenges for the solar industry. A crucial aspect of this advancement involves the creation of solar cell antireflection coating, which play a significant role in minimizing sunlight reflection on the cell surface. In this study, we report on the optimization of the characteristics of CeO2 films prepared by pulsed laser deposition through the variation of laser energy density. The deposited CeO2 nanostructure films have been used as an effective antireflection coating (ARC) and light-trapping morphology to improve the efficiency of silicon crystalline solar cell. The film’s thickness increases as laser fluence i
... Show More