Preferred Language
Articles
/
iRe5Po8BVTCNdQwCz2Wy
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder

Publication Date
Fri Apr 01 2016
Journal Name
Al–bahith Al–a'alami
Indicators of Mental image among Students of the University of Baghdad about Iraqi Political Parties-(a research based on a master thesis)
...Show More Authors

Media studies have focused mostly on the issue of the mental image because the image that is formed in the mind has become not only a photo of a human being and having kept for himself. This image has an outside influence which may sometimes up to the formation of the fate of others and it sometimes includes individuals and groups together.
This study comes in the context of identifying the image of Iraqi political parties among Iraqi university students and the nature of the view that students have in their minds about these parties.
Chapter one includes the problem of the research, the importance of the study, the goals and method used. Chapter two is divided into two sections: section one deals with the concept of the mental i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 01 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
The Construction of (k, 3)-Arcs in PG (2, 9) by Using Geometrical Method
...Show More Authors

In this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic. We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness

Publication Date
Tue Feb 01 2022
Journal Name
Svu-international Journal Of Engineering Sciences And Applications
Water Quality Detection using cost-effective sensors based on IoT
...Show More Authors

Crossref (1)
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Thesis
User Authentication Based on Keystroke Dynamics Using Artificial Neural Networks
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t

... Show More
Publication Date
Sun Apr 01 2018
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Information Hiding using LSB Technique based on Developed PSO Algorithm
...Show More Authors

<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi

... Show More
View Publication
Scopus (17)
Crossref (4)
Scopus Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors
...Show More Authors

The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com

... Show More
View Publication
Scopus (23)
Crossref (13)
Scopus Crossref
Publication Date
Mon Apr 26 2021
Journal Name
Journal Of Electrical Engineering &amp; Technology
ANFIS Based Reinforcement Learning Strategy for Control A Nonlinear Coupled Tanks System
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Digital Image Watermarking Using Arnold Scrambling and Berkeley Wavelet Transform
...Show More Authors

Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.

View Publication Preview PDF
Publication Date
Sun Sep 28 2025
Journal Name
Al–bahith Al–a'alami
THE EFFECT OF FASHIONISTA ON FEMALE BODY IMAGE
...Show More Authors

The research aims to reveal the relationship between the use of social networking sites and the image that females make about their physical formation, the nature of the effects, their value judgments about the image of their bodies, their attitudes toward plastic surgery, the most important types of these processes for them, their motivations to conduct them, and the cultural pressures they are exposed to. The study, moreover, investigates in the effects of those plastic surgery on their behavior as active and interacting users with what is published on social media, according to the theory of social comparison. This paper is an attempt to understand the pattern of social networking

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 21 2015
Journal Name
Integrated Journal Of Engineering Research And Technology
A HYBRID CUCKOO SEARCH AND BACK-PROPAGATION ALGORITHMS WITH DYNAMIC LEARNING RATE TO SPEED UP THE CONVERGENCE (SUBPL) ALGORITHM
...Show More Authors

BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.