Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder
Background: Scientific education aims to be inclusive and to improve students learning achievements, through appropriate teaching and learning. Problem Based Learning (PBL) system, a student centered method, started in the second half of the previous century and is expanding progressively, organizes learning around problems and students learn about a subject through the experience of solving these problems.Objectives:To assess the opinions of undergraduate medical students regarding learning outcomes of PBL in small group teaching and to explore their views about the role of tutors and methods of evaluation. Type of the study: A cross-sectional study.Methods: This study was conducted in Kerbala Medical Colleges among second year students
... Show MoreNurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreThe rise in the general level of prices in Iraq makes the local commodity less able to compete with other commodities, which leads to an increase in the amount of imports and a decrease in the amount of exports, since it raises demand for foreign currencies while decreasing demand for the local currency, which leads to a decrease in the exchange rate of the local currency in exchange for an increase in the exchange rate of currencies. This is one of the most important factors affecting the determination of the exchange rate and its fluctuations. This research deals with the currency of the European Euro and its impact against the Iraqi dinar. To make an accurate prediction for any process, modern methods can be used through which
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
The purpose of the study is to identify the teaching techniques that mathematics' teachers use due to the Brain-based learning theory. The sample is composed of (90) teacher: (50) male, (40) female. The results have shown no significant differences between male and female responses' mean. Additionally, through the observation of author, he found a lack of using Brain-based learning techniques. Thus, the researcher recommend that it is necessary to involve teachers in remedial courses to enhance their ability to create a classroom that raise up brain-based learning skills.
Background: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti
Background: Nasopharyngeal carcinoma (NPC) is one of the most challenging tumors because of their relative inaccessibility and that their spread can occur without significant symptoms with few signs, but Radiotherapy (RT) has a role in treatment of it.
Objectives: To show that RT is still the modality of choice in the treatment of NPC, to study modes of presentations, commonest histopathological types and their percentages, to show differences in the sensitivities of these types to RT and to find out a 5 year survival rate(5YSR) and its relation with lymph node involvement.
Methods: This is a retrospective study of 44 patients with NPC who were treated with routine RT from 1988-2007 at the institute of radiology and nuclear medicin
The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi
... Show More