This field experiment was conducted at Research Station B, Department of Horticulture and Landscape Engineering, College of Agricultural Engineering Sciences, University of Baghdad, Jadiriyah during the fall season of 2019-2020 to evaluate the effect of cultivation dates and soil fertilization source on the growth, yield and quality of broccoli. A split plot design within the RCBD design with three replicates was applied as the Max F1 hybrid broccoli seedlings were transferred to the field at two dates 25, Sep. 2019 and 15, Oct. 2019, which were symbolized as A and B, respectively, and occupied at the main plot. After two weeks of cultivation, the soil fertilizers were applied three times during the season in 20 days between each application including Biohealth fertilizer at a rate of 1 and 2 kg per donum, symbolized as T1 , T2 and NPK nano fertilizer at a rate of 250 and 500 ml donum, symbolized as T3 and T4 , as well as the control treatment that was fertilized according to the fertilizer recommendation and symbolized as T0 . This factor was considered the most important (sub plot) and the number of plants per experimental unit reached 15 plants. The results revealed a significant effect under the combination of first cultivation date and the soil application of Biohealth fertilizer at a concentration of 1 kg dunum (AT1) on the leaves content of N and k, leaves number, leaves area, the diameter and weight of the main disc, the total yield, the total soluble solids percent (TSS) and the heads content of beta-carotene, which were recorded 3.96, 2.99%, 41.0 Leaf-1 plant, 227.44 dm2 Plant-1, 74.0 cm, 896.40 gm Plant1 , 37.35 Tons Ha-1, 11.00%, 6.95 mlg 100 gm wet weight-1, respectively, which did not significantly differ from the combination of the first cultivation date and the application of nano-NPK fertilizer at a concentration of 500 ml dunum (AT4) on leaves area, the weight of the main head, and the total yield, which were recorded 212.39 dm2 plant-1 and 884.55 gm plant-1 and 36.85 tons ha- 1, respectively compared to the second date of cultivation and the application of fertilizer recommendation (BT0), which gave 2.33, 1.68%, 34.0 leaves, 139.99 dm2 plant-1, 51.0 cm, 689.23 gm plant-1 and 28.71 tons ha-1, 8.17% and 4.57 mlg 100 gm wet weight-1, respectively.
Electro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show MoreThe creation and characterisation of biodegradable blend films based on chitosan and polyvinyl alcohol for application in a range of packaging is described. The compatibility between the chitosan and PVA polymers was good. Composite films had a compact and homogeneous structure, according to the morphology analysis. The mechanical test result of PVA/CH at concentrations 5% showed, that The higher values of TS recorded in sample (p1, with 40 MPa) while the lower values appeared in sample (p9, with 22.09 MPa), the TS decreased gradually as the amount of PVA increased in blend film. While the blend film of pure Chitosan exhibits a poor mechanical strength which makes it a poor candidate for packaging but Blending CH with PVA together improved
... Show MoreCopper oxide nanoparticles (CuO NPs) were synthesized by two methods. The first was chemical method by using copper nitrate Cu (NO3)2 and NaOH, while the second was green method by using Eucalyptus camaldulensis leaves extract and Cu (NO3)2. These methods easily give a large scale production of CuO nanoparticles. X-ray diffraction pattern (XRD) reveals single phase monoclinic structure. The average crystalline size of CuO NPs was measured and used by Scherrer equation which found 44.06nm from chemical method, while the average crystalline size was found from green method was 27.2nm. The morphology analysis using atomic force microscopy showed that the grain size for CuO NPs was synthesized by chemical and green methods were 77.70 and 89.24
... Show MoreCadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MoreThis study has aimed to investigate the effect of feed forms, mash and pellet on productive performance and carcass yields of broilers. 225 unsexed birds of the hybrid Ross 308 broiler were used, with a starting weight of 45.4 g one day old. The experiment lasted up to 35 days. The birds were randomly distributed into five treatments; each treatment contained 45 chicks according to three replicates (15 birds/ replicate). The experiment’s treatments included: (T1) Control mash 100% (pellet 0%), (T2) mash 75% (pellet 25%), (T3) mash 50% (pellet 50%), (T4) mash 25% (pellet 75%) and (T5) mash 0% (pellet 100%). Results were recorded a significant superior of T4 compared with other treatments (P≤0.05) in live body weight, weight gain,
... Show MoreThe present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles and Titanium oxide (TiO2) nanoparticles each alone to diesel fuel on the characteristic of the emissions. The size of both Alumina and Titanium oxide nanoparticles which have been added to diesel fuel to obtain nano-fuel is about 20 nm and 25 nm respectively. Three doses of (Al2O3) and (TiO2) were prepared (25, 50, and 100) ppm. The nanoparticles mixed with gas oil fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) and Titanium oxide (TiO2) to g
... Show MoreENGLISH