This study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), atomic force microscope (AFM) scanning electron microscope (SEM) and elemental analysis. XRD showed presence diffraction peak at 11.95 for GO and this diffraction disappeared for RGO. Diffraction peak of crystal planes for MnO2 matched well with standard data. The diameter of MnO2 nanotubes was determined using Debye scherrer equation and found to be 11.6nm corresponding with AFM image. The AFM images proves the growth of MnO2 nanotubes from the MnO2 nano spherical shape these images are very rare in the scientific literature. The real permittivity (ε'), imaginary permittivity (ε") and a.c conductivity (S.m-1) of all nanomaterials were measured by LCR meter at frequencies ranging from 100Hz to 100 KHz. The result showed the values of the real permittivity for RGO higher than GO at all frequencies while RGOTM have lower values of real permittivity at low frequency due to presence of MnO2 nanorods which affected the accumulation of charges. The imaginary permittivity of f-MWCNT-GOT and RGO were at low frequency higher than the real values due to their high conductivity. Also imaginary permittivity of f-MWCNT-GOT nanocomposites at all frequencies higher than real which have negative values at frequencies in range 400 to 4KHz .a.c conductivity for RGO and f-MWCNT-GOT nanocomposite have higher values compared with all prepared nanomaterial, at the same time the modified WE with f-MWCNT-GOT nanocomposite show the best detection limits in comparison with other prepared modified WE. Also the prepared nanomaterials were used to study novel sensing system and develop electrochemical sensor capable of detecting some of antibiotics such as Ampicillin (AMP), Amoxilline (AMOX) which have β-lactam ring and Tetracycline (TET) which contains four hydrocarbon rings using cyclic voltammetry (CV) technique via modification of the working electrode of the SPCE with the prepared nanomaterial by deposition process. f-MWCNT-GOT/SPCE nanocomposite showed higher electrochemical reaction response and lower limit of detection. The working electrodes surfaces were studied with AFM and SEM techniques. The value of apparent heterogeneous electron transfer rate constant (ks) was determined using the value of electron transfer coefficient (α) and the result showed that f-MWCNT-GOT/SPCE showed higher (ks).
Carbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
Complexes of some metal ions with 2-thiotolylurea were prepared in ethanolic medium using (1:1) (Metal : Ligand) ratio yielded series of neutral complexes as the general formula [M(L)Cl2]. The prepared complexes were identified by atomic absorption FT.IR, UV-Visble spectra, molar conductivity and magnetic properties. From the above data the tetrahedral structure was suggested for all complexes.
The new Schiff base 1‐[(2‐{1‐[(dicyclohexylamino)‐methyl]‐1H‐indol‐3‐yl}‐ethylimino)‐methyl]naphthalen‐2‐ol (HL) was prepared from 1‐{[2‐(1H‐Indol‐3‐yl)‐ethylimino] methyl}‐naphthalen‐2‐ol and dicyclohexyl amine. From this Schiff base, monomeric complexes [M (L)n (H2O)2 Cl2] with M = Cr, Fe, Mn, Cd, and Hg were synthesized and characterized based on elemental analysis (EA), FT‐IR, mass(MS), UV‐visible, thermal analysis, magnetic moment, and molar conductance. The results showed that the geometrical structural were octahedral geometries for the Cr(III) and Fe(III) complex
This study was carried out at University of Baghdad - College of Agricultural Engineering Sciences - research station B during the fall season of 2019-2020, in order to evaluate the effect of Ozone enrichment and the foliar application of organic nutrient on nutrient and water use efficiency and fertilizer productivity of broccoli plant using the modified NFT film technology. A factorial experiment (2*5) was carried out within Nested Design with three replicates. The ozone treatment was distributed into the main plots which consisted of oxygen (O2) and ozone (O3). The foliar application of organic nutrients were distributed randomly within each replicate including five treatments, which were the control treatment (T0), Coconut wat
... Show MoreThis study was carried out at University of Baghdad - College of Agricultural Engineering Sciences - Research Station B during the autumn season 2019-2020, in order to evaluate the effect of Ozone and the foliar application of coconut water and moringa extract on the growth of broccoli plant grown in modified NFT film technology. A factorial experiment (2*5) was carried out within Nested Design with three replicates. The ozone treatment was distributed into the main plots which consisted of oxygen (O2) and ozone (O3). The foliar application of organic nutrients were distributed randomly within each replicate including five treatments, which were the control treatment (T0), Coconut water with two concentrations of 50 (T1) and 100 ml.
... Show MoreIn this present work, [4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-methoxyphenl)(A1),4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol(A2),1,1`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene) dinaphthalen-2-ol (A3)]C.S was prepared in 3.5% NaCl. Corrosion prevention at (293-323) K has been studied by using electrochemical measurements. It shows that the utilized inhibitors are of mixed type based on the polarization curves. The results indicated that the inhibition efficiency changes were used with a change according to the functional groups on the benzene ring and through the electrochemical technique. Temperature increases with corrosion current
... Show MoreSeveral new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different alde
... Show MoreIn this study, chalcones were synthesis by condensing 2-acetylpyridine with aromatic aldehyde derivatives in dilute ethanolic potassium hydroxide solution at room temperature according to Claisen-Schmidt condensation. After that, new heterocyclic derivatives such as Oxazine, Thiazine and Pyrazol were synthesis by reaction between chalcones with urea, thiourea and hydrazine hydrate respectively scheme 1. All these compounds wrer characterization by FTIR, 1H-NMR spectroscopy and elemental analysis.