Preferred Language
Articles
/
iBd9RI8BVTCNdQwCy2jb
Advances in Document Clustering with Evolutionary-Based Algorithms
...Show More Authors

Document clustering is the process of organizing a particular electronic corpus of documents into subgroups of similar text features. Formerly, a number of conventional algorithms had been applied to perform document clustering. There are current endeavors to enhance clustering performance by employing evolutionary algorithms. Thus, such endeavors became an emerging topic gaining more attention in recent years. The aim of this paper is to present an up-to-date and self-contained review fully devoted to document clustering via evolutionary algorithms. It firstly provides a comprehensive inspection to the document clustering model revealing its various components with its related concepts. Then it shows and analyzes the principle research work in this topic. Finally, it compiles and classifies various objective functions, the core of the evolutionary algorithms, from the related collection of research papers. The paper ends up by addressing some important issues and challenges that can be subject of future work.

Scopus Crossref
View Publication
Publication Date
Sun Feb 15 2026
Journal Name
Iraqi Journal Of Science
Intrusion Detection Approach Based on DNA Signature
...Show More Authors

View Publication
Publication Date
Sat Dec 03 2022
Journal Name
Tikrit Journal Of Pure Science
A Pixel Based Method for Image Compression
...Show More Authors

The basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Jan 15 2025
Journal Name
International Journal Of Cloud Computing And Database Management
Deep video understanding based on language generation
...Show More Authors

Vol. 6, Issue 1 (2025)

View Publication Preview PDF
Publication Date
Thu Jun 04 2020
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
User authentication system based specified brain waves
...Show More Authors

A security system can be defined as a method of providing a form of protection to any type of data. A sequential process must be performed in most of the security systems in order to achieve good protection. Authentication can be defined as a part of such sequential processes, which is utilized in order to verify the user permission to entree and utilize the system. There are several kinds of methods utilized, including knowledge, and biometric features. The electroencephalograph (EEG) signal is one of the most widely signal used in the bioinformatics field. EEG has five major wave patterns, which are Delta, Theta, Alpha, Beta and Gamma. Every wave has five features which are amplitude, wavelength, period, speed and frequency. The linear

... Show More
Scopus (7)
Scopus
Publication Date
Thu Jan 01 2015
Journal Name
Iet Colloquium On Millimetre-wave And Terahertz Engineering & Technology 2015
Millimetre wave semiconductor based isolators and circulators
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Mon Dec 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Reinforcement Learning-Based Television White Space Database
...Show More Authors

Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Fri Jun 18 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Quadtree partitioning scheme of color image based
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (23)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Performance of Case-Based Reasoning Retrieval Using Classification Based on Associations versus Jcolibri and FreeCBR: A Further Validation Study
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref