This research aims to estimate production functions through which production relations, possibilities for production elements substitution, measurement of its substitution elasticity, and efficiency and distribution coefficients can be analyzed. This would be done through estimation of constant elasticity of substitution production function for agricultural companies in Iraq depending on data from Iraqi Stock Exchange reports of 2005-2016. The researcher had used panel data model and estimated its three models: the Pooled Regression Model (PRM), the Fixed Effect Model (FEM) and the Random Effect Model (REM). A comparison was made for theses three models using F, LM, Husman tests. Tests show that Fixed Effect Model (FEM) is the best estimated one and depended as the explanation of the constant elasticity of substitution production function. The results of this function referred that a 1% increase in capital stock and labor would increase the agriculture production of the agricultural companies with 0.73 and 0.48 % respectively. The capital stock helps in using the production technology. Also, there were no indications that the production technology effects on production value (i.e there is no increasing in efficiency value with the increasing of capital stock; note that the timeline of the study was 12 years in which supposed to show the applied production technology used by the agricultural companies and if it happened, it would be of no important. The elasticity substitution was 10, which is high and indicates that there are other substitutions available to the companies. The researcher recommends to put the scientific resources management, the changing of production and competence, the information technology, and the market changes into consideration so as to have a great competent.
Use of computer simulation to quantify the effectiveness of blowing agents can be an effective tool for optimizing formulations and for the adopting of new blowing agents. This paper focuses on a mass balance on blowing agent during foaming including the quantification of the amount that stays in the resin, the amount that ends up in the foam cells, and the pressure of the blowing agent in the foam cells. Experimental data is presented both in the sense of developing the simulation capabilities and the validating of simulation results.
Environmental Tax is deemed as one of the most important tools that can be used to eliminate the problem of oil –based environment pollution resulted out of oil products processes and this has been significantly approved by the experience in those leading countries in the field of protecting the environment against pollution whereas oil-producing countries which are rather awkward in maintaining the environment such as Iraq , suffer from notorious environmental effects pertaining to oil product processes.
The problem of the research is represented the increased and constant rise in the volume of the environmental pollutants resulted from the processes managed by the intern
... Show MoreIn this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show More