In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.
In this study, phytoplankton density, chlorophyll-a, and selected physico- chemical parameters were investigated in Erbil wastewater channel. The surveys were carried out monthly from May 2003 to April 2004. Samplings were established on three sites from headwaters to the mouth. The results showed that pH was in alkaline side of neutrality, with significant differences (P<0.05) between sites 1 and 3. TSS concentration decreased from site 1 toward site 2 (mean value, 80.15 to 25.79 mg.l-1). A clear gradual increase in mineral content (TDS) observed from site one of the channel towards the mouthpart. Soluble reactive phosphate has a concentration maximum mean value reached 48.4 µg.l-1 which is recorded in site 2. A high positive relat
... Show MoreIn this work an experimental study is performed to evaluate the thermal performance
of locally made closed loop solar hot water system using a shell and helical coiled tube
heat exchanger as a storage tank. Several measurements are taken include inlet and outlet
temperatures of both collectors and supply water and temperature distribution within the
storage tank. This is beside the water flow rate in both collectors and load cycle. The
main parameters of the system are obtained.
Exploration activities of the oil and gas industry generate loads of formation water called produced water (PW) up to thousands of tons each day. Depending on the geographic area, formation depth, oil production techniques, and age of oil supply wells, PW from different oil fields contain different chemical compositions. Currently, PW is also known as industrial waste water containing heavy metals that are toxic to humans and the environment, requiring special processing so that they can be disposed of in the environment. To determine the heavy metals content in PW from the Al-Ahdab oil field (AOF), the Ministry of Science and Technology/Agricultural Research Department determined som
A simple , sensitive and accurate spectrophotometric method for the trace determination of bismuth (III) has been developed .This method is based on the reaction of bismuth (III) with arsenazo(III) in acid solution (pH=1.9) to form a blue water soluble complex which exhibits maximum absorption at 612nm .Beer's law is obeyed over the concentration range of 2-85 ?g bismuth (III) in a final volume of 20 mL( i.e. 0.1 – 4.25?g.mL-1) with a correlation coefficient of (0.9981) and molar absorptivity 1.9×104 L.mol-1.cm-1 . The limit of detection (LOD) and the limit of quantification (LOQ) are 0.0633 and 0.0847 ?g.mL-1 , respectively . Under optimum conditions,the stoichiometry of the reaction between bismuth (III) and arsenazo(III) r
... Show MoreThis study examines experimentally the performance of a horizontal triple concentric tube heat exchanger TCTHE made of copper metal using water as cooling fluid and oil-40 as hot fluid. Hot fluid enters the inner annular tube of the TCTHE in a direction at a temperature of 50, 60 and 70 oC and a flow rate of 20 l/hr. On the other hand, the cooling fluid enters the inner tube and the outer annular tube in the reverse direction (counter current flow) at a temperature of 25 oC and flow rates of 10, 15, 20, 25, 30 and 35 l/hr. The TCTHE is composed of three copper tubes with outer diameters of 34.925 mm, 22.25 mm, and 9.525 mm, and thicknesses of 1.27 mm, 1.143 mm, and 0.762 mm, respectively. TCTHE tube's length was 670
... Show MoreTigris River is one of the main important surface water resources in Iraq. This necessitates continuous study of its quality . The present study is concerned with the characteristics and quality of Tigris water passing through in Baghdad city. (eight) samples were collected from the river in the area Grea't City. The study periods were carried over four season, which has been sampled once represent the every season. First sampling 12-11-2012 represent the autumn season The second sampling 20-1-2013 to represent the winter season. The third in 25-3- 2013 to represent the Springer season. The fourth during 29-5-2013 to represent the summer spring season. In order to specify the water quality, a group of physical and chemical analyses have bee
... Show MoreThis paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics
... Show More