Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.
Economic organizations operate in a dynamic environment, which necessitates the use of quantitative techniques to make their decisions. Here, the role of forecasting production plans emerges. So, this study aims to the analysis of the results of applying forecasting methods to production plans for the past years, in the Diyala State Company for Electrical Industries.
The Diyala State Company for Electrical Industries was chosen as a field of research for its role in providing distinguished products as well as the development and growth of its products and quality, and because it produces many products, and the study period was limited to ten years, from 2010 to 2019. This study used the descriptive approa
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThe research aims to show the effect of some short-term debt instruments (central treasury transfers, cash credit granted to the government by commercial banks) on the production of the wheat crop in Iraq, through its effect on money supply during the period (1990-2018), As the study includes two models according to the statistical program (Eviews9), the first model included measuring the effect of short-term debt instruments on money supply, and the second measuring the extent of the money supply's impact on Wheat crop production, as the results of the standard analysis showed that the short-term debt instruments used in the model were Significant effect on wheat crop production indirectly through its effect on money supply, As
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreUse of computer simulation to quantify the effectiveness of blowing agents can be an effective tool for optimizing formulations and for the adopting of new blowing agents. This paper focuses on a mass balance on blowing agent during foaming including the quantification of the amount that stays in the resin, the amount that ends up in the foam cells, and the pressure of the blowing agent in the foam cells. Experimental data is presented both in the sense of developing the simulation capabilities and the validating of simulation results.
The increasing complexity of how humans interact with and process information has demonstrated significant advancements in Natural Language Processing (NLP), transitioning from task-specific architectures to generalized frameworks applicable across multiple tasks. Despite their success, challenges persist in specialized domains such as translation, where instruction tuning may prioritize fluency over accuracy. Against this backdrop, the present study conducts a comparative evaluation of ChatGPT-Plus and DeepSeek (R1) on a high-fidelity bilingual retrieval-and-translation task. A single standardize prompt directs each model to access the Arabic-language news section of the College of Medicine, University of Baghdad, retrieve the three most r
... Show MoreIn the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show More