Preferred Language
Articles
/
hxiNnJYBVTCNdQwCxYUt
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as mean absolute error (MAE), root mean square error (RMSE), and R-squared. The future forecast is compared with an outcome of a previous physical model that integrates wells and reservoir properties to simulate gas production using regressions and forecasts based on empirical and theoretical relationships. Regression analysis ensures alignment between historical data and model predictions, forming a baseline for hybrid model performance evaluation. The results reveal the complementary attributes of these methodologies, providing insights into integrating data-driven and physics-based approaches for optimal reservoir management. The hybrid model captured the production rate conservatively with an extra margin of three years in favor of the physical model.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Using Artificial Neural Network Models For Forecasting & Comparison
...Show More Authors

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 05 2025
Journal Name
Irrigation And Drainage
Predicting Potential Salinity in River Water for Irrigation Water Purposes Using Integrative Machine Learning Models
...Show More Authors
ABSTRACT<p>Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct</p> ... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Apr 18 2019
Journal Name
Al-kindy College Medical Journal
Congenital Club Foot Treated By Of Ponseti Method : A Short-Term Results
...Show More Authors

Background: Congenital club foot is a complex deformity of foot .It is a collection of different abnormalities, with different etiologies. Consequently, Severity varies with   difficulties in evaluating treatment strategies with outcome results. The treatment of congenital club foot remains controversial. Usually, the orthopedist's goal is to obtain anatomically and functionally normal feet in all patients.                                Objective: To asses short term follow up result of conservatively treated club feet in relation to the age

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 18 2019
Journal Name
Al-kindy College Medical Journal
Congenital Club Foot Treated By Of Ponseti Method : A Short-Term Results
...Show More Authors

Background: Congenital club foot is a complex deformity of foot .It is a collection of different abnormalities, with different etiologies. Consequently, Severity varies with   difficulties in evaluating treatment strategies with outcome results. The treatment of congenital club foot remains controversial. Usually, the orthopedist's goal is to obtain anatomically and functionally normal feet in all patients.                                Objective: To asses short term follow up result of conservatively treated club feet in relation to the age of initial casting by Ponseti technique.           Methods :A cross sectional observational study with some comparative content done in Al-kindy

... Show More
Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Computers, Communications, Control And Systems Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Gas Lift Optimization for Zubair Oil Field Using Genetic Algorithm-Based Numerical Simulation: Feasibility Study
...Show More Authors

The gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Artificial Intelligence For Covid-19
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

View Publication
Scopus (33)
Crossref (27)
Scopus Crossref
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Engineering
Short Term Deflection of Ordinary, Partially Prestressed and CFRP Bars Reinforced Concrete Beams
...Show More Authors

Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
...Show More Authors
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
View Publication
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref