Mature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibility of the CO2-AGD process without any bottom water drives, it was first used. The experimental results demonstrated that existence of bottom water drive affected oil recoveries due to pressure support. Oil recovery before gas breakthrough increases proportionally with bottom water drive intensity. The gas breakthrough time recoveries for CO2-AGD1, CO2-AGD2, and CO2-AGD3 runs were 38.68%, 50.70%, and 60.85% of OOIP. The pressure gradient along the physical model decreases as bottom water drive intensity increases. The CO2-AGD approach delayed gas breakout by 72 min. As aquifer strength increases, gas breakthrough is delayed. In the three CO2-AGD runs and after breakthrough occurrence, the injector-producer pressure difference decreased due to the residual heads of oil and water columns above the horizontal well. As long as oil and water exist in the model, the pressure differential will not be zero, and the relative permeability and capillary trapping also control this phenomenon. Finally, it was demonstrated that there is a direct correlation between the strength of the aquifer and the oil recovery factor. The strength of the aquifer positively affects the oil recovery at breakthrough and the ultimate oil recovery.
The human intellect and his ability to complex thinking is a characteristic that Allah has given him above all his creatures. Islam came to encourage the utilization of the mind by thought, contemplation and consideration of the kingdom of Allah, His signs and religion, and He gave us a set of legislation that preserves the mind and protects it from falling into error or deviation.
This research deals with one of the most important components of civilizations in general and Islamic civilization in particular, which is thinking and what is related to it. It is an essential and influential component in man's dealing with life around him and the for
... Show MoreThe fractional free volume (Fh) in polystyrene (PS) as a function of neutron -irradiation dose has been measured, using positron annihilation lifetime (PAL) method. The results show that Fh values decreased with increasing n-irradiation dose up to a total dose of 501.03× 10-2 Gy.
A percentage reduction of 2.14 in Fh values is noticed after the initial n-dose corresponding to a percentage reduction in the free volume equal to 42.14/Gy.
The total n-dose induces a percentage reduction of 7.26, corresponding to a percentage reduction of 1.45/Gy. These results indicate that cross -linking is the predominant process induced by n-irradiation.
The results suggest that n-irradiation induces structure changes in PS, causing cross-linking
Quadrotors are coming up as an attractive platform for unmanned aerial vehicle (UAV) research, due to the simplicity of their structure and maintenance, their ability to hover, and their vertical take-off and landing (VTOL) capability. With the vast advancements in small-size sensors, actuators, and processors, researchers are now focusing on developing mini UAV’s to be used in both research and commercial applications. This work presents a detailed mathematical nonlinear dynamic model of the quadrotor which is formulated using the Newton-Euler method. Although the quadrotor is a 6 DOF under-actuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is under-actuated. The der
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the road in all the sections of the country. Vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the developing system is consist of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny
... Show MoreDevelopments are carried out to enhance the performance of vertical axis wind turbines (VAWT). This paper studies the performance of the ducted wind turbine with convergent duct (DAWT). Basically, the duct technique is utilized to provide the desired wind velocity facing the turbine. Methodology was developed to estimate the decisive performance parameter and to present the effect of the convergent duct with different inlet angles. The ducted wind turbine was analyzed and simulated using MATLAB software and numerically using ANSYS-Fluent 17.2. Result of both approaches were presented and showed good closeness for the two cases of covering angles 12 and 20 respectively. Results also showed that the convergent duct with an inlet angl
... Show MoreIn this paper, the ability of using corn leaves as low-cost natural biowaste adsorbent material for the removal of Indigo Carmen (IC) dye was studied. Batch mode system was used to study several parameters such as, contact time (4 days), concentration of dye (10-50) ppm, adsorbent dosage (0.05-0.25) gram, pH (2-12) and temperature (30-60) oC. The corn leaf was characterized by Fourier-transform infrared spectroscopy device before and after the adsorption process of the IC dye and scanning electron microscope device was used to find the morphology of the adsorbent material. The experimental data was imputing with several isotherms where it fits with Freundlich (R2 = 0.9937) and followed pseudo second order kinetic. The hi
... Show MoreObjectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show More