Image Fusion is being used to gather important data from such an input image array and to place it in a single output picture to make it much more meaningful & usable than either of the input images. Image fusion boosts the quality and application of data. The accuracy of the image that has fused depending on the application. It is widely used in smart robotics, audio camera fusion, photonics, system control and output, construction and inspection of electronic circuits, complex computer, software diagnostics, also smart line assembling robots. In this paper provides a literature review of different image fusion techniques in the spatial domain and frequency domain, such as averaging, min-max, block substitution, Intensity-Hue-Saturation(IHS), Principal Component Analysis (PCA), pyramid-based techniques, and transforming. Different quality metrics for quantitative analysis of these approaches have been debated.
In this work, the fusion cross section , fusion barrier distribution and the probability of fusion have been investigated by coupled channel method for the systems 46Ti+64Ni, 40Ca+194Pt and 40Ar+148Sm with semi-classical and quantum mechanical approach using SCF and CCFULL Fortran codes respectively. The results for these calculations are compared with available experimental data. The results show that the quantum calculations agree better with experimental data, especially bellow the Coulomb barrier, for the studied systems while above this barrier, the two codes reproduce the data.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given con
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreCerium (III), Neodymium (III) and Samarium (III) Complexes existent a wide range of implementation that stretch from their play in the medicinal and pharmaceutical area because of their major significant pharmacological characteristic such as antifungal, anti-cancer, anti-bacterial ,anti-human immunodeficiency virus ,antineoplastic, anti-inflammation,inhibition corrosion,in some industrial (polymers, Azo dye).It is likely to open avenuesto research among various disciplines such as physics, electronics, chemistry and materials science by these complexes that contain exquisitely designed organic molecules.This paper reviews the definition, importance and various applications of Cerium (III), Neodymium (III) and Samarium (III) Complexes anddi
... Show MoreObjective: To review and identify the major drivers for COVID-19 vaccine acceptance. Methods: A scoping review of studies of COVID-19 vaccine perceptions and barriers to using the COVID-19 vaccines. Two search engines, including PubMed and Google Scholar, were purposefully searched. Results: Eight studies from different countries were reviewed to categorize factors influencing people's acceptance of COVID-19 according to the Health Belief Model (HBM). Perceived susceptibility, and severity of the disease (COVID-19), in addition to perceived benefits of COVID-19 vaccination and "cues to action", can enhance vaccination acceptance. In contrast, perceived barriers to the COVID-19 vaccine can increase people's hesitancy to be vaccinated
... Show MoreIn present days, drug resistance is a major emerging problem in the healthcare sector. Novel antibiotics are in considerable need because present effective treatments have repeatedly failed. Antimicrobial peptides are the biologically active secondary metabolites produced by a variety of microorganisms like bacteria, fungi, and algae, which possess surface activity reduction activity along with this they are having antimicrobial, antifungal, and antioxidant antibiofilm activity. Antimicrobial peptides include a wide variety of bioactive compounds such as Bacteriocins, glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. Bioactive peptides derived from various natural sources like bacte
... Show MoreModern agriculture is challenged by soil degradation, nutrient depletion, plant diseases, and excessive dependence on chemical fertilizers and pesticides. By examining different strains of Pantoea, the study highlights their role in promoting plant growth, improving their tolerance to stress, reducing reliance on synthetic agricultural inputs, and contributing to more sustainable and environmentally friendly agricultural practices. Using a combination of practical qualitative methods and reliable quantitative data, the research gathers extensive information on how these microbes impact various crops and key soil health indicators. The improvements in plant growth statistics and nutrient levels are often quite astonishing. The result
... Show More