Ultrasound is a mechanical energy which can generate altering zones of compression and rarefaction along its path in the tissues. Ultrasound imaging can provide a real time screening for blood and multiple organs to aiding the diagnostic and treatment. However, ultrasound has the potential to deposit energy in the blood and tissues causing bio effects which is depending on ultrasound characteristics that including frequency and the amount of intensity. These bio effects include either a stable cavitation presented non thermal effects or inertial cavitation of harmful effect on the tissues. The non-thermal cavitation can add features in diagnostic imaging and treatment more than the inertial cavitation. Ultrasound Contrast agents are a microbubble of high scattering signals that are well developed and injected intravenously to obtain good contrast image among tissues which have very low difference in their acoustic impedance. The fundamental of this review is to summarize the physics concepts of ultrasound in medical imaging in relation to the stimulation of cavitation phenomena, whether it is free formation or encapsulated microbubbles in connected to the physical parameters that regulate the degree of bio effects, mechanical index and their role in introducing a contrast image to improve the medical diagnostic.
In this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work
... Show Moreجريت دراسة مختبرية لمعرفة تأثير الزيت الطيار لقشور ثمار نبات النارنج الصفرC. aurantium تجاه النمو السطحي للفطريات Penicillium expansum، Aspergillus flavus و Fusarium oxysporum ، أظهرت نتائج الفعالية التثبيطية للزيت الطيار تأثيراً معنويا متفاوتاً في الفطريات المشمولة بالدراسة، إذ كان الزيت الطيار أكثر تأثيرأَ في الفطر P. expansum تلاه الفطر A. flavus ،في حين كان الفطر oxysporum F.أقل حساسية تجاه الزيت الطيار. بصورة عامة اظهر الزيت الطيار تأثيرا تثبيطيا
... Show MoreThe DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing 15% Te has the highest electrical conductivity allowing maximum current through the sample compared to Lu with other samples. Therefore, it is found that the DC co
... Show MoreChildren who have a health problem need special requirements for their clothes. The purpose of the study is to design functional and aesthetic clothes to meet their needs. The research used the applied descriptive approach. The research sample comprised 120 women whose children suffered from hip dislocation. Designs for injured children presented and submitted to the arbitrators for evaluation regarding the functional and aesthetic aspects. The finding was achieving the design solutions. The most important recommendations are to increase attention to designing clothes to suit all the needs of society.
In this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic
... Show MoreIn this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show MoreThe impact of undergraduate research experiences on students' academic development and retention in STEM fields is significant. Students' success in STEM fields is based on developing strong research and critical thinking skills that make it essential for students to engage in research activities throughout their academic programs. This work evaluates the effectiveness of undergraduate research experiences with respect to its influence on student retention and academic development. The cases presented are based on years of experience implementing undergraduate research programs in various STEM fields at Colorado State University Pueblo (CSU Pueblo) funded by HSI STEM Grants. The study seeks to establish a correlation between students' reten
... Show MoreThe long – term behaviour of polyethylene products used out doors is affected by weathering. In the present work,
weathering test was carried out to find the effect of the environment conditions on the mechanical properties of
HDPE/LLDPE blends with different weight percents (0, 15, 30, and 45 %) relative to the LLDPE by increasing the
exposure times to (100, 150, 200, 250, 300) hr.
A series of tests (destructive), tensile, impact and hardness were carried out on the prepared samples, the results
obtained declare the changes on the material behaviour from ductile to brittle and the polymer shows a decline in the
mechanical properties with increasing the exposure times.
In the present work empirical equations were r