Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date very challenging. Although advanced iterative algorithms have been developed to address this challenge, they exhibit slow convergence speed and thus deliver high latency and computational complexity. To overcome this challenge, we propose a computationally efficient conjugate gradient-descent (CGD) algorithm based on the Riemannian manifold in order to optimize the DL training sequence at base station (BS), while improving the convergence rate to provide a fast CSI estimation for an FDD m-MIMO system. To this end, the sum rate and the computational complexity performances of the proposed training solution are compared with the state-of-the-art iterative algorithms. The results show that the proposed training solution maximizes the achievable sum rate performance, while delivering a lower overall computational complexity owing to a faster convergence rate in comparison to the state-of-the-art iterative algorithms.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show More<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T
... Show MoreAbstract: The aim of the current research is to find out the extent to which systems thinking skills are included in the mathematics textbook scheduled for the third intermediate grade for the academic year (2020-2021) by answering the main research question: What are the systems thinking skills included in the mathematics textbook for middle third grade? The analytical descriptive approach was used, and to achieve the goal of the research, a list of the main systemic thinking skills and sub-skills was prepared, and after analyzing the content of the mathematics textbook, the reliability of the analysis was verified through the analysis over time and through others, and it obtained a reliability rate of 98% us
... Show MoreIn the present work the clathrate hydrate dissociation enthalpies of refrigerant R134a+ water system, and R134a + water + salt system were determined. The heat of dissociation of three types of aqueous salts solutions of NaCl, KBr and NaF at three concentrations (0.09, 0.17and 0.26) mol·kg−1 for each salt type, were enthalpy measured. The Clapeyron equation was used tocalculate heat of dissociation of experimental data for binary and ternary system.In order to find the effect of compressibility factor on heat dissociation enthalpy, the study was conducted by using equation of state proposed by Peng and Robinson Stryjek-Vera (PRSV). The obtained results of dissociation enthalpy for binary system were (143.8) kJ.mol-1
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreTraining has an effect on employees’ performances. Accordingly, the person who is responsible for employees’ development must figure out the most effective way to train and develop employees. Central Michigan University (CMU) has recognized the importance of providing appropriate training for employees who have a duty in advising students. The reason is that these employees have a significant impact on students’ educational performances. Thus, special attention to this category of employees is needed to improve advising quality. This research attempted to explore the impact of training on academic advising at CMU. Face-to-face interviews and online surveys were used as data collection tools for this study. The study scope c
... Show More