The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is frequent in COVID-19 patients. This can assist healthcare practitioners in identifying and monitoring illness development, as well as making treatment decisions. Scale U-Net is a strong U-Net design modification that can increase the performance of semantic segmentation tasks. Our model, Normalized-UNet, uses batch normalization after each convolutional layer to decrease the internal covariate shift, which dramatically improves the network's learning efficiency.
The research aimed at designing teaching program using jigsaw in learning spiking in volleyball as well as identifying the effect of these exercises on learning spring in volleyball. The researchers used the experimental method on (25) students as experimental group and (27) students as controlling group and (15) students as pilot study group. The researchers conducted spiking tests then the data was collected and treated using proper statistical operations to conclude that the strategy have a positive effect in experimental group. Finally, the researchers recommended using the strategy in making similar studies on other subjects and skills.
Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreIn this work was prepared three different types of modified screen printed carbon electrode (SPCEs) with drops casted method, the used carbone nanomaterials were the MWCNT, functionalized –MWCNT (f-MWCNT) and After several experiments were made to find an appropriate ratio to make good GOT/f-MWCNT nanocomposite, and found the suspension mixture (1:1) from GOT/f-MWCNT (f-MWCNT-GOT). The electrical and physical properties were performed with cyclic voltammeter technique, and studied the maximum current response, the effective surface area, effect of the pH value and the determination of active surface area for MWCNT-SPCE , f-MWCNT-SPCE and f-MWCNT-GOT/SPCE as (0.04 cm2), (0.119 cm2) and (0.115 cm2) respectively, the surface coverage concent
... Show MoreSynthesis three organic inhibitors for carbon steel corrosion: 2-(propylthio)-1H-benzo[d]imidazole (PTBI), 2-(allylthio)- 1H-benzo[d]imidazole (ATBI) and 2-(prop-2-ynylthio)-1H-benzo[d]imidazole (YTBI) were prepared from reaction of 2-mercapto benzimidazole with different alkyl halide. The melting point and TLC were used to confirm the purity of the inhibitors as well as using the [FTIR, 1H-NMR and 13C-NMR] for the identify structures. The synthesized inhibitors were examined by potentiostatic polarization measurement as corrosion inhibitors of carbon steel in acidic media [1M H2SO4 ].The polarization measurement results showed that the mixed type inhibitors. In addition, the efficiency of inhibitors (YTBI) were studied at different con
... Show MoreThe Light and the Dark is the fourth novel in a series written by Charles Percy Snow where it tackles a phase of gifted scholar and remarkable individual Roy Calvert as he search for a source of power and meaning in life to relieve his inner turmoil. The character Roy Calvert is based on Snow's friend, Charles Allbery who exposes the message the character of Roy intends to convey in a certain phase of his life and the prophecy the novel carries amid catastrophe so widespread in the thirties of the twentieth century
Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreThere is no doubt that Jane Austen is one of the most studied authors of the late 18th and early 19th centuries. Her female characters have been extensively studied and they seem to have aroused much interest as manifestations of the conduct of their time. Her heroines have realized that there were many mistakes in the rules of conduct that controlled and restricted their behaviors. Thus, they have found no fault in correcting these mistakes, by behaving naturally without acting. Elizabeth Bennet the heroine of Pride and Prejudice and Marianne Dashwood of Sense and Sensibility are the chosen examples of that kind of women.