The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is frequent in COVID-19 patients. This can assist healthcare practitioners in identifying and monitoring illness development, as well as making treatment decisions. Scale U-Net is a strong U-Net design modification that can increase the performance of semantic segmentation tasks. Our model, Normalized-UNet, uses batch normalization after each convolutional layer to decrease the internal covariate shift, which dramatically improves the network's learning efficiency.
Polycystic ovary syndrome (PCOS) is the most endocrine problem in women of regenerative age. PCOS women typically belong to an age and sex group which is at higher risk for severe coronavirus disease (COVID-19). COVID-19 targets cells through angiotensin-converting enzyme 2 (ACE2) receptor presents on cells in veins, lungs, heart, digestion tracts, and kidneys. Renin-Angiotensin System (RAS) over activity has likewise been described in metabolic disorders; type 2 diabetes mellitus (T2DM), and conditions shared by women with polycystic ovary condition. The point of this study is to know the job of renin and ACE2 in PCOS and coronavirus and its relationship with hormones and other metabolic parameters related. The study groups consist of 1
... Show MoreCoronavirus disease (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus, SARS-CoV-2. Infection with SARS-CoV-2 primarily occurs through binding to angiotensin-converting enzyme-2 (ACE2), which is abundantly expressed in various anatomical sites, including the nasopharynx, lungs, cardiovascular system, and gastrointestinal and genitourinary tracts. This study aimed to nurses' knowledge and protective health behaviors about prevention of covid-19 pandemic complications.
A descriptive design stud
The research aims to estimate missing values using covariance analysis method Coons way to the variable response or dependent variable that represents the main character studied in a type of multi-factor designs experiments called split block-design (SBED) so as to increase the accuracy of the analysis results and the accuracy of statistical tests based on this type of designs. as it was noted in the theoretical aspect to the design of dissident sectors and statistical analysis have to analyze the variation in the experience of experiment )SBED) and the use of covariance way coons analysis according to two methods to estimate the missing value, either in the practical side of it has been implemented field experiment wheat crop in
... Show MoreThis paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.
The emergence of COVID-19 has resulted in an unprecedented escalation in different aspects of human activities, including medical education. Students and educators across academic institutions have confronted various challenges in following the guidelines of protection against the disease on one hand and accomplishing learning curricula on the other hand. In this short view, we presented our experience in implementing e-learning to the undergraduate nursing students during the present COVID-19 pandemic emphasizing the learning content, barriers, and feedback of students and educators. We hope that this view will trigger the preparedness of nursing faculties in Iraq to deal with this new modality of learning and improve it should t
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreBackground: The COVID-19 virus outbreak had a massive effect on many parts of people's lives, as they were advised to quarantine and lockdown to prevent the virus from spreading, which had a big impact on people's mental health, anxiety, and stress. Many internal and external factors lead to stress. This negatively influences the body's homeostasis. As a result, stress may affect the body's capacity to use energy to defend against pathogens. Many recent investigations have found substantial links between human mental stress and the production of hormones, prohormones, and/or immunological chemicals. some of these researches have verified the link between stress and salivary cortisol levels. The aim of this study is to measure salivary corti
... Show MoreIn recent decades, the identification of faces with and without masks from visual data, such as video and still images, has become a captivating research subject. This is primarily due to the global spread of the Corona pandemic, which has altered the appearance of the world and necessitated the use of masks as a vital measure for epidemic prevention. Intellectual development based on artificial intelligence and computers plays a decisive role in the issue of epidemic safety, as the topic of facial recognition and identifying individuals who wear masks or not was most prominent in the introduction and in-depth education. This research proposes the creation of an advanced system capable of accurately identifying faces, both with and
... Show More