The smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, recognition and understanding and efficient processing of large amounts of video data. This research proposes a novel unified approach to lossy and lossless video frame compression, which is beneficial for the autonomous processing and enhanced representation of high-resolution video data in various domains. The proposed fast block matching motion estimation technique, namely mean predictive block matching, is based on the principle that general motion in any video frame is usually coherent. This coherent nature of the video frames dictates a high probability of a macroblock having the same direction of motion as the macroblocks surrounding it. The technique employs the partial distortion elimination algorithm to condense the exploration time, where partial summation of the matching distortion between the current macroblock and its contender ones will be used, when the matching distortion surpasses the current lowest error. Experimental results demonstrate the superiority of the proposed approach over state-of-the-art techniques, including the four step search, three step search, diamond search, and new three step search.
Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
In earthquake engineering problems, uncertainty exists not only in the seismic excitations but also in the structure's parameters. This study investigates the influence of structural geometry, elastic modulus, mass density, and section dimension uncertainty on the stochastic earthquake response of a multi-story moment resisting frame subjected to random ground motion. The North-south component of the Ali Gharbi earthquake in 2012, Iraq, is selected as ground excitation. Using the power spectral density function (PSD), the two-dimensional finite element model of the moment resisting frame's base motion is modified to account for random ground motion. The probabilistic study of the moment resisting frame structure using stochastic fin
... Show MoreThe Caputo definition of fractional derivatives introduces solution to the difficulties appears in the numerical treatment of differential equations due its consistency in differentiating constant functions. In the same time the memory and hereditary behaviors of the time fractional order derivatives (TFODE) still common in all definitions of fractional derivatives. The use of properties of companion matrices appears in reformulating multilevel schemes as generalized two level schemes is employed with the Gerschgorin disc theorems to prove stability condition. Caputo fractional derivatives with finite difference representations is considered. Moreover the effect of using the inverse operator which tr
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreIn this research, a factorial experiment (4*4) was studied, applied in a completely random block design, with a size of observations, where the design of experiments is used to study the effect of transactions on experimental units and thus obtain data representing experiment observations that The difference in the application of these transactions under different environmental and experimental conditions It causes noise that affects the observation value and thus an increase in the mean square error of the experiment, and to reduce this noise, multiple wavelet reduction was used as a filter for the observations by suggesting an improved threshold that takes into account the different transformation levels based on the logarithm of the b
... Show MoreA multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates i
... Show More