For the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe earthquake. The current numerical model takes into account the material non-linearity and the non-linearity of pile-to-surrounded soil contact surfaces. A lateral ground acceleration was adapted to simulate the seismic effects. This research emphasizes modeling the 1 g model by adapting MIDAS GTS NX software. This will, in turn, present the main findings from a single pile model under a combined static and dynamic load. Consequently, the main results were first validated and then used for further deep investigations. The numerical results predicted a slightly higher displacement in the horizontal and vertical directions than the 1 g shaking table. The shear stress–shear strain relationship was predicted. Positive frictional resistance for the closed-ended pile was captured during the first 5 s when low values of acceleration were applied and, consequently, the pile resistance decreased and became negative. Internal and external frictional resistance was captured for the open-ended pipe pile. Overall, frictional resistance values were decreased with time until they reached the last time step with a minimum value. As a result, the evaluation of the current study can be used as a guide for analysis and preliminary design in engineering practice.
This paper discussed the solution of an equivalent circuit of solar cell, where a single diode model is presented. The nonlinear equation of this model has suggested and analyzed an iterative algorithm, which work well for this equation with a suitable initial value for the iterative. The convergence of the proposed method is discussed. It is established that the algorithm has convergence of order six. The proposed algorithm is achieved with a various values of load resistance. Equation by means of equivalent circuit of a solar cell so all the determinations is achieved using Matlab in ambient temperature. The obtained results of this new method are given and the absolute errors is demonstrated.
KE Sharquie, AA Noaimi, AG Al-Ghazzi, Journal of Dermatology & Dermatologic Surgery, 2015 - Cited by 19
In this study, the harvest of maize silage with the cross double row sowing method were tested with a single row disc silage machine in two different PTO applications (540 and 540E min-1) and at two different working speeds v1, v2 (1.8 and 2.5 km h-1). The possibilities of harvesting with a single row machine were revealed, and performance characteristics such as hourly fuel consumption, field-product fuel consumption and PTO power consumption were determined in the trials. The best results in terms of hourly fuel consumption and PTO power consumption were determined in the 540E PTO application and V1 working speed. When the fuel consumption of the field-product is evaluated, it is obtained with V2 working speed and 540E PTO application. As
... Show MoreThe finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi
Increasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off
... Show MoreIraq has the second largest proven oil reserves in the world. According to oil experts, it is expected that the Iraq's reserves to rise to 200+ billion barrels of high-grade crude.
Oil is a strategic commodity for producing and exporting countries in general, and Iraq in particular, as demonstrated by the international experience that oil is an important means to achieve economic growth, an important tool in the overall economic, social and political development. It is also an important source of hard currency for any national economy and a means to connect the local economy and the global economy. In this paper we focus our attention on selecting the best regression model that explain the effect of human capita
... Show MoreFour simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeab
... Show MoreThe calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show More