As a result of recent developments in highway research as well as the increased use of vehicles, there has been a significant interest paid to the most current, effective, and precise Intelligent Transportation System (ITS). In the field of computer vision or digital image processing, the identification of specific objects in an image plays a crucial role in the creation of a comprehensive image. There is a challenge associated with Vehicle License Plate Recognition (VLPR) because of the variation in viewpoints, multiple formats, and non-uniform lighting conditions at the time of acquisition of the image, shape, and color, in addition, the difficulties like poor image resolution, blurry image, poor lighting, and low contrast, these must be overcome. This paper proposed a model by using Modify Bidirectional Associative Memory (MBAM), which is one type of Hetero-associative memory, MBAM works in two phases (learning and convergence phases) to recognize the number plate, and this proposed model can overcome these difficulties because MBAM's associative memory has a high ability to accept noise and distinguish distorted images, as well as the speed of the calculation process due to the small size of the network. The accuracy of plate region localization is 99.6%, the accuracy for character segmentation is 98%, and the achieved accuracy for character recognition is 100% in various circumstances
Four new copolymers were synthesized from reaction of bis acid monomer 3-((4-carboxyphenyl) diazenyl)-5-chloro-2-hydroxybenzoic acid with five diacidhydrazide in presence of poly phosphoric acid. The resulted monomers and copolymers have been characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopy as well as EIMs technique. The number averages of molecular weights of the copolymers are between 4822 and 9144, and their polydispersity indexes are between 1.02 and 2.15. All the copolymers show good thermal stability with the temperatures higher than 305.86 C when losing 10% weight under nitrogen. The cyclic voltammetry (CV) measurement and the electrochemical band gaps (Eg) of these copolymers are found below 2.00 ev.
The main intention of this study was to investigate the development of a new optimization technique based on the differential evolution (DE) algorithm, for the purpose of linear frequency modulation radar signal de-noising. As the standard DE algorithm is a fixed length optimizer, it is not suitable for solving signal de-noising problems that call for variability. A modified crossover scheme called rand-length crossover was designed to fit the proposed variable-length DE, and the new DE algorithm is referred to as the random variable-length crossover differential evolution (rvlx-DE) algorithm. The measurement results demonstrate a highly efficient capability for target detection in terms of frequency response and peak forming that was isola
... Show MoreThe first aim of this paper was to evaluate the push-out bond strength of the gutta-percha coating of Thermafil and GuttaCore and compare it with that of gutta-percha used to coat an experimental hydroxyapatite/polyethylene (HA/PE) obturator. The second aim was to assess the thickness of gutta-percha around the carriers of GuttaCore and HA/PE obturators using microcomputed tomography (
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreAbstract
Locally natural occurring Iraqi rocks of Bauxite and Porcelanite (after pre calcinations at 1000oC for 1hr) were used, with the addition of different proportions of MgO and Al2O3, to prepare refractory materials. The effects of these additives on the physical and thermal properties of the prepared refractories were investigated.
Many batches of Bauxite/MgO, Bauxite/Al2O3, Bauxite/MgO/Al2O3, and Porcelanite/ MgO/Al2O3 were prepared. The mixture is milled and classified into different size fractions; fine (less than 45μm) 40%, middle (45-75μm) 40%, and coarse (75-106μm) 20% .
... Show MoreVoting is one of the most fundamental components of a democratic society. In 2021 Iraq held the Council of Representatives (CoR) elections in 83 electoral constituencies in 19 governorates. Nonetheless, several significant issues arose during this election, including the problem of logistics distribution, the excessively long period of ballot counting, voters can't know if their votes were counted or if their ballots were tampered with, and the inconsistent regulation of vote counting. Blockchain technology, which was just invented, may offer a solution to these problems. This paper introduces an electronic voting system for the Iraq Council of Representatives elections that is based on a prototype of the permission hyperledger fabr
... Show MoreThe field of structural optimization (optimal design) has grown rapidly over the past decades with many different optimization methods that could be used to produce a structure of minimum weight. This research deals with two aspects, in the first, a general numerical technique based on the finite element analysis and it suggests to investigate the preliminary behavior of metal stiffened plate under action of static load environment. The technique was included a finite element model of the structures using high- order isoparimetric plate elements to be used to create a certain models to obtain their optimum design. The models are characterized such that, each model is builded using different types of stiffener configuration. The second as
... Show More