As a result of recent developments in highway research as well as the increased use of vehicles, there has been a significant interest paid to the most current, effective, and precise Intelligent Transportation System (ITS). In the field of computer vision or digital image processing, the identification of specific objects in an image plays a crucial role in the creation of a comprehensive image. There is a challenge associated with Vehicle License Plate Recognition (VLPR) because of the variation in viewpoints, multiple formats, and non-uniform lighting conditions at the time of acquisition of the image, shape, and color, in addition, the difficulties like poor image resolution, blurry image, poor lighting, and low contrast, these must be overcome. This paper proposed a model by using Modify Bidirectional Associative Memory (MBAM), which is one type of Hetero-associative memory, MBAM works in two phases (learning and convergence phases) to recognize the number plate, and this proposed model can overcome these difficulties because MBAM's associative memory has a high ability to accept noise and distinguish distorted images, as well as the speed of the calculation process due to the small size of the network. The accuracy of plate region localization is 99.6%, the accuracy for character segmentation is 98%, and the achieved accuracy for character recognition is 100% in various circumstances
This article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f
... Show MoreBackground: The main aim of the present study is to qualify and quantify voids formation of root canals obturated with GuttaCore (GC) and experimental Hydroxyapatite polyethylene (HA/PE) as new carrier-based root canal fillings by using micro computed tomography scan. Materials and methods: In the present study, eight straight single-rooted human permanent premolar teeth are selected and disinfected, then stored in distilled water. The teeth decoronated leaving a root length of 12mm each. The root canals instrumented by using crown down technique and the apical diameter of the root canal prepared to a size # 30/0.04 for achieving standardized measurements. A 5mL of 17% EDTA used to remove the smear layer followed by 5mL of 2.5% NaOCl and r
... Show MoreA variety of new phenolic Schiff bases derivatives have been synthesized starting from Terephthaladehyde compound, all proposed structures were supported by FTIR, 1H-NMR, 13C-NMR, Elemental analysis, some derivatives evaluated by Thermal analysis (TGA).
Blockchain has garnered the most attention as the most important new technology that supports recent digital transactions via e-government. The most critical challenge for public e-government systems is reducing bureaucracy and increasing the efficiency and performance of administrative processes in these systems since blockchain technology can play a role in a decentralized environment and execute a high level of security transactions and transparency. So, the main objectives of this work are to survey different proposed models for e-government system architecture based on blockchain technology implementation and how these models are validated. This work studies and analyzes some research trends focused on blockchain
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
The concept of the separation worry is considered one of the common disorders in children. The causes and effects of this worry influence the child mental and cognitive ability and the child ability to communicate with others, has friendship and the ability of adaptive with the environment, peers and teachers and it also influences the child's academic and social performance.
The importance of this study is represented in handling the working memory, one of important subject in cognitive psychology. Many universal studies show that the working memory is very important in several daily functions such as continuous attention, followinstructions, implement instructions of many steps, the moment of information remembering and keep focusin
As long as the place in which a person lives has a meaning and temporal dimensions , memory is the main axis of these dimensions , today , city centers and old historical sectors of cities are abandoned , and began to turn into slums , the contradiction between old and historical sectors led cities to lose their identity while people lost their sense of belongingness to the old sectors where their ancestors used to live . The old city of Hilla used to have social , historical and cultural role on determining the identity . The study problem can be summarized as the ( lack of studies regarding the impact of historical memory related to Hilla old city on social and cultural mobility ) , the study hypothesis claims that the social , histori
... Show More