The study aimed to prepare quick response codes to learn some of the technical skills of the second graders in the Faculty of Physical Education and Sports Sciences. The experimental method was used in the design of the experimental and control experimental and control groups. The research sample was represented by second-graders in the College of Physical Education and Sports Sciences / University of Baghdad, and by lot, the second division (a) was chosen to represent the experimental group that applied the inverse method using the QR code, and the second division (g) to represent the control group and applied the traditional method. (10) Students per group. After the tribal tests, his main experiment was carried out for 10 weeks with one instruction unit per week to learn the skill of jumping on a jumping platform and a motor chain on a parallel machine, a motor chain on the mind machine. After the post-tests, the statistical basket of social sciences (spss) was used to process the research results, which included: arithmetic mean, standard deviation, t.test test of the corresponding samples, and t.test test of asymmetric samples, Conclusions: The inverse chapter using the QR code has proven to be effective in learning some of the technical skills of the gymnasium and has outstripped the conventional approach of the college despite the traditional method that has made progress in learning.
The research aims at evaluating the illustrations images and determining the availability of good image standards in the illustrations images of the content of the second intermediate stage computer's book for the academic year (2019-2020) as seen by computer teachers. The sample was randomly selected, (30) teachers who are actually teaching the subject in schools within the geographical area of the province of Baghdad (Karkh III). To achieve this goal, ten standards were identified: scientific accuracy, suitability for the level of students, image clarity, image freshness, quality of coloring, suitability of its location of the subject, Matching their content glimpsed, The subject matter is appropriate in terms of area, matching its tit
... Show MoreAutorías: Ismael Saleem Abed, Imad Kadhim Khlaif, Salah Mahmood Salman. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 5, 2022. Artículo de Revista en Dialnet.
The convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.
Abstract
The current research aims to identify the level of E-learning among middle school students, the level of academic passion among middle school students, and the correlation between e-learning and academic passion among middle school students. In order to achieve the objectives of the research, the researcher developed two questionnaires to measure the variables of the study (e-learning and study passion) among students, these two tools were applied to the research sample, which was (380) male and female students in the first and second intermediate classes. The research concluded that there is a relationship between e-learning and academic passion among students.
Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreProfessional learning societies (PLS) are a systematic method for improving teaching and learning performance through designing and building professional learning societies. This leads to overcoming a culture of isolation and fragmenting the work of educational supervisors. Many studies show that constructing and developing strong professional learning societies - focused on improving education, curriculum and evaluation will lead to increased cooperation and participation of educational supervisors and teachers, as well as increases the application of effective educational practices in the classroom.
The roles of the educational supervisor to ensure the best and optimal implementation and activation of professional learning soci
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreText categorization refers to the process of grouping text or documents into classes or categories according to their content. Text categorization process consists of three phases which are: preprocessing, feature extraction and classification. In comparison to the English language, just few studies have been done to categorize and classify the Arabic language. For a variety of applications, such as text classification and clustering, Arabic text representation is a difficult task because Arabic language is noted for its richness, diversity, and complicated morphology. This paper presents a comprehensive analysis and a comparison for researchers in the last five years based on the dataset, year, algorithms and the accuracy th
... Show More