Preferred Language
Articles
/
hRe4CpEBVTCNdQwC3pLp
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under detection is one of the results of the proposed classifier. The work demanded the collection of about 5000 color codes which in turn were subjected to algorithms for training and testing. The open-source platform TensorFlow for ML and the open-source neural network library Keras were used to construct the algorithm for the study. The results showed an acceptable efficiency of the built classifier represented by an accuracy of 90% which can be considered applicable, especially after some improvements in the future to makes it more effective as a trusted colorimeter.

Scopus Crossref
Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 23 2020
Journal Name
Artificial Intelligence Research
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe

... Show More
View Publication
Crossref
Publication Date
Thu Aug 18 2022
Journal Name
Journal Of Interdisciplinary Mathematics
The dynamics of Coronavirus pandemic disease model in the existence of a curfew strategy
...Show More Authors

View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Minimization of Chloride and Sulphate Ions Concentrations in the Effluents from an Elctroplating Plant
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Apr 13 2024
Journal Name
مجلة واسط للعلوم الریاضیة
The development of the leading Arab scouting movements and their role in the development of youth and society
...Show More Authors

the history of the Scouting movement reflects the global social cultural and technological change over more than a century. scouting aims to develop young people worldwide through educational programs based on specific principles and values. in arab countries, the scouting movement is considered one of the most important platforms contributing to developing young people and enhancing their rule. positive in society, began with the establishment of the first Scout camp in the region and witnessed great growth and prosperity over the decades the research reveals the historical roots and development of the scout movement in the leading arab countries and analyzes the positive impact of scout movement in the leading arab countries on the develo

... Show More
View Publication
Publication Date
Fri Mar 21 2014
Journal Name
International Journal Of Antennas And Propagation
Development of a Compact Wide-Slot Antenna for Early Stage Breast Cancer Detection Featuring Circular Array Full-View Geometry
...Show More Authors

A novel planar type antenna printed on a high permittivity Rogers’ substrate is proposed for early stage microwave breast cancer detection. The design is based on a p-shaped wide-slot structure with microstrip feeding circuit to eliminate losses of transmission. The design parameters are optimized resulting in a good reflection coefficient at −10 dB from 4.5 to 10.9 GHz. Imaging result using inhomogeneous breast phantom indicates that the proposed antenna is capable of detecting a 5 mm size cancerous tumor embedded inside the fibroglandular region with dielectric contrast between the target and the surrounding materials ranging from 1.7 : 1 to 3.6 : 1.

Publication Date
Tue Jun 01 2021
Journal Name
Swarm And Evolutionary Computation
A review of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging development and future directions
...Show More Authors

Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte

... Show More
Scopus (66)
Crossref (47)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Swarm And Evolutionary Computation
A review of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging development and future directions
...Show More Authors

View Publication
Scopus (66)
Crossref (47)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Swarm And Evolutionary Computation
A review of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging development and future directions
...Show More Authors

Scopus (66)
Crossref (47)
Scopus Clarivate Crossref
Publication Date
Wed Sep 16 2020
Journal Name
Al-kindy College Medical Journal
The importance of anatomical zonal classification in the early management of penetrating neck injuries
...Show More Authors

Background: Penetrating neck injuries are common problem in our country due to increasing violence, terrorist bombing and military operations.
These injuries are potentially life threating and need great attention and proper management.
Objective: The aim of this study is to focus on the importance of anatomical zonal classification of the neck in the management of penetrating injuries of the visceral compartment of the Neck.
Methods :70 patients with various injuries who were managed at causality unit and Otolaryngology department in Al-Kindy Teaching Hospital during aperiod from January 1st 2015 to October 31st 2015.
The study carried on those patient depending on proper clinical examination and their urgent management.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 18 2025
Journal Name
Al Kut Journal Of Economics And Administrative Sciences
Use of the Bootstrap in the logistic regression model for Breast cancer disease
...Show More Authors

The logistic regression model is one of the oldest and most common of the regression models, and it is known as one of the statistical methods used to describe and estimate the relationship between a dependent random variable and explanatory random variables. Several methods are used to estimate this model, including the bootstrap method, which is one of the estimation methods that depend on the principle of sampling with return, and is represented by a sample reshaping that includes (n) of the elements drawn by randomly returning from (N) from the original data, It is a computational method used to determine the measure of accuracy to estimate the statistics, and for this reason, this method was used to find more accurate estimates. The ma

... Show More
View Publication