Preferred Language
Articles
/
hRe4CpEBVTCNdQwC3pLp
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under detection is one of the results of the proposed classifier. The work demanded the collection of about 5000 color codes which in turn were subjected to algorithms for training and testing. The open-source platform TensorFlow for ML and the open-source neural network library Keras were used to construct the algorithm for the study. The results showed an acceptable efficiency of the built classifier represented by an accuracy of 90% which can be considered applicable, especially after some improvements in the future to makes it more effective as a trusted colorimeter.

Scopus Crossref
Preview PDF
Quick Preview PDF
Publication Date
Tue Feb 27 2024
Journal Name
Tem Journal
Supervised Classification Accuracy Assessment Using Remote Sensing and Geographic Information System
...Show More Authors

Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Classification & Evaluation of Evidence of deprivation in Iraq (2009) by using Cluster analysis
...Show More Authors

       The study aimed to reach the best rating for the views and variables in the totals characterized by qualities and characteristics common within each group and distinguish them from aggregates other for the purpose of distinguishing between Iraqi provinces which suffer from deprivation, for the purpose of identifying the status of those provinces in the early allowing interested parties and regulators to intervene to take appropriate corrective action in a timely manner. Style has been used cluster analysis Cluster analysis to reach the best rating to those totals from the provinces that suffer from problems, where the provinces were classified, based on the variables (Edu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 24 2025
Journal Name
Food And Bioprocess Technology
Classification of Apple Slices Treated by Atmospheric Plasma Jet for Post-harvest Processes Using Image Processing and Convolutional Neural Networks
...Show More Authors
Abstract<p>Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices usin</p> ... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Practice of Continuous Auditing in accordance with Technology Acceptance Model: An analytical study of a sample of the Iraqi auditing Offices
...Show More Authors

Abstract

This paper discusses the essence of the developmental process in auditing firms and offices at the world today. This process is focused on how to adopt the audit concepts which is based on Information and Communication Technology (ICT), including the Continuous Auditing (CA) in particular. The purpose of this paper is to design a practical model for the adoption of CA and its requirements according to the Technology Acceptance Model (TAM). This model will serve as a road map for manage the change and development in the Iraqi auditing firms and offices. The paper uses the analytical approach in reaching to the target results. We design the logical and systematic relations between the nine variable

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
A proposed model for disclosing the role of the collective intelligence system in improving joint auditing
...Show More Authors

This research aims to present a proposed model for disclosure and documentation when performing the audit according to the joint audit method by using the questions and principles of the collective intelligence system, which leads to improving and enhancing the efficiency of the joint audit, and thus enhancing the confidence of the parties concerned in the outputs of the audit process. As the research problem can be formulated through the following question: “Does the proposed model for disclosure of the role of the collective intelligence system contribute to improving joint auditing?”   

The proposed model is designed for the disclosure of joint auditing and the role

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 09 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Impact Cloud Computing On The Development of Accounting Education: Evidence From Sultanate of Oman
...Show More Authors

Cloud computing is the new technological trend for future generations. It represents a new way to use IT resources more efficiently. Cloud computing is one of the most technological models for developing and exploiting infrastructure resources in the world. Under the cloud, the user no longer needs to look for major financing to purchase infrastructure equipment as companies, especially small and medium-sized ones, can get the equipment as a service, rather than buying it as a product. The idea of ​​cloud computing dates back to the sixties of the last century, but this idea did not come into actual application until the beginning of the third millennium, at the hands of technology companies such as Apple, Hp, IBM, which had

... Show More
View Publication Preview PDF
Publication Date
Sun May 02 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Value at risk simulation in a fixed return stock portfolio using the Monte Carlo simulation model The concept of a bond portfolio
...Show More Authors

This research aims to predict the value of the maximum daily loss that the fixed-return securities portfolio may suffer in Qatar National Bank - Syria, and for this purpose data were collected for risk factors that affect the value of the portfolio represented by the time structure of interest rates in the United States of America over the extended period Between 2017 and 2018, in addition to data related to the composition of the bonds portfolio of Qatar National Bank of Syria in 2017, And then employing Monte Carlo simulation models to predict the maximum loss that may be exposed to this portfolio in the future. The results of the Monte Carlo simulation showed the possibility of decreasing the value at risk in the future due to the dec

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Ain Shams Engineering Journal
Estimating server utilization rate in single server queuing models using an approximate solution of stiff fluid flow model
...Show More Authors

View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref