The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
Objective(s): To Evaluate Diabetes self –management among patients in Baghdad City and to compare
between these patients self-management relative to the type of the disease.
Methodology: A descriptive design was conducted in Baghdad city, started from November 16th 2017 to the
end of May 17 th 2018 in order to evaluate Diabetes self-management. Purposive (non-probability) sample,
which was consisted of (120) patients who were diagnosed with D.M. The sample is comprised of (60) patient
with diabetes type I and (60) patient with diabetes type II. It is consisted of (60) male and (60) female. A
questionnaire is constructed for the purpose of the study. It is composed of (42) items. Reliability and validity of
the ques
Background: There are many congenital anomalies associated with cleft lip and/or palate. This research is to study the prevalence of congenitally missing teeth and supernumerary teeth in this population group. Materials and Method: One hundred eight cleft lip and/or palate Iraqi patients had participated in this study (57 male, 51 female), 3-12 years of age. 26 of them had orthopantomogram were within (6-12) years of age were inspected for congenitally missing teeth and supernumerary teeth. Patients whom age range 3-5 years were checked for the congenitally missing teeth by clinical examination with strongly insisting the teeth were not missed due to caries or trauma. Results: There were 19(73.076%) patients with 41 congenitally missing tee
... Show MoreAir pollution evaluation of the operational processes in the East Baghdad oil field was carried out. The analysis was carried out by ICP-MS technique. Total Suspended Particles (TSP) air load was higher than Iraqi Standards and world international allowable limits of World Health Organization. The mean concentrations of gases carbon monoxide, carbon dioxide, sulfur dioxide, in the air were within national and world standards, while the mean concentration of nitrogen dioxide was higher than standard limits. The air of the study area is considered a good quality for CO, CO2 and NO2 with no health effect, while it is hazardous for TSP that have serious risk for people with respiratory disease. The mean concentrations of Cd, Cr, Cu and
... Show MoreUrban agriculture is one of the important urban uses of land in cities since the inception of cities and civilizations, but the great expansion of cities in the world during the twentieth century and the beginning of the twentieth century and the increase in the number of urban residents compared to the rural population has led to a decline in this use in favor of other uses.
This decline in agricultural and green land areas in cities has negatively affected the environment, natural life and biological diversity in cities in addition to the great impact on the climate and the increase in temperatures and the negative impact on the economic side, since urban agriculture is an important pillar of the economy, especially
... Show MoreCNC machines are widely used in production fields since they produce similar parts in a minimum time, at higher speed and with possibly minimum error. A control system is designed, implemented and tested to control the operation of a laboratory CNC milling machine having three axes that are moved by using a stepper motor attached to each axis. The control system includes two parts, hardware part and software part, the hardware part used a PC (works as controller) connected to the CNC machine through its parallel port by using designed interface circuit. The software part includes the algorithms needed to control the CNC. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD or 3D MAX and is saved in a we
... Show MoreToday, there are large amounts of geospatial data available on the web such as Google Map (GM), OpenStreetMap (OSM), Flickr service, Wikimapia and others. All of these services called open source geospatial data. Geospatial data from different sources often has variable accuracy due to different data collection methods; therefore data accuracy may not meet the user requirement in varying organization. This paper aims to develop a tool to assess the quality of GM data by comparing it with formal data such as spatial data from Mayoralty of Baghdad (MB). This tool developed by Visual Basic language, and validated on two different study areas in Baghdad / Iraq (Al-Karada and Al- Kadhumiyah). The positional accuracy was asses
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreAbstract
The research has discussed the public relations as dependent variable of its branch dimensions( confidence , commitment, control and satisfaction ) and the governmental service quality as independent variable of its branch dimensions (response, dependency, emphasis, tangibility and sympathy), and the research problem has represented by weakness of service quality presented to the customers dealing with company, which is observed via field co-existence of the researcher, where he observe that the quality presented in the company services, are inappropriate with the customers expectations level, also there is weakness of attention and recognition by the