The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
Correlation equations for expressing the boiling temperature as direct function of liquid composition have been tested successfully and applied for predicting azeotropic behavior of multicomponent mixtures and the kind of azeotrope (minimum, maximum and saddle type) using modified correlation of Gibbs-Konovalov theorem. Also, the binary and ternary azeotropic point have been detected experimentally using graphical determination on the basis of experimental binary and ternary vapor-liquid equilibrium data.
In this study, isobaric vapor-liquid equilibrium for two ternary systems: “1-Propanol – Hexane – Benzene” and its binaries “1-Propanol –
... Show MoreThe issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreThis research aims to studying and analyzing the theoretical
framework of the environmental auditing in industrial environment to its a broad and danger environmental effects . It aims to contribute in setting and testing a proposed procedure framework for environmental auditing in that vital activity .The practical aspect focused on testing a proposed framework within practice it in a one Iraqi industrial company that has a huge effect on environmental activity, represented by Iraqi state company
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreDue to restrictions and limitations on agricultural water worldwide, one of the most effective ways to conserve water in this sector is to reduce the water losses and improve irrigation uniformity. Nowadays, the low-pressure sprinkler has been widely used to replace the high-pressure impact sprinklers in lateral move sprinkler irrigation systems due to its low operating cost and high efficiency. However, the hazard of surface runoff represents the biggest obstacle for low-pressure sprinkler systems. Most researchers have used the pulsing technique to apply variable-rate irrigation to match the crop water needs within a normal application rate that does not produce runoff. This research introduces a variable pulsed irrigation algorit
... Show MoreHTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023
This research is based on the idea of showing the extent to which the public relies on satellite channels as sources for news of the demonstrations in Iraq .This was the essence of the problem for which the researcher set several goals, including knowing the public’s confidence in the news of these satellite channels and comparing them with others. The researcher chose an available intended sample of (117) respondents in Baghdad - Karkh and Rusafa by adopting the survey method and applying a questionnaire form and the theory of media dependence for the period from 15/11/2019 to 1/1/2021 . By using statistical methods, the researcher reached many results, the most important of which are: Satellite channels are a source for 79% of the pu
... Show MoreThe research seeks to identify the dimensions of creative thinking and its impact on the re-engineering of hotel service operations by analyzing the correlation and impact between research variables as well as comparing the research sample The importance of the research comes from the need to motivate managers the importance of creative thinking among workers in the researched hotels because it is an essential part in the re-engineering of hotel services. To achieve this a questionnaire was designed containing (33) items that include the independent research variables (creative thinking) and the accredited (re-engineering the hotel service) and distributed to a sample of (50) individuals represented by (Commissioner Director, Dep
... Show More This paper concerns with openness concept in contemporary learning environment, which ranges from physical characters to its relation with learning efficiency and its output. Previous literatures differ to clear the effect of openness on the engagement between learner within themselves, and with this kind of spaces. Engagement means: active participation, the ability of making dialogue, self-reflection and the ability to explore and communicate with them and
within learning space. Research roblem was: The lack of knowledge about the effect of Openness on learner engagement with learning spaces. The two concepts were applied on three types of learning spaces in the Department of the Architectu
Abstract:
There is a close relationship between rigidity and distort structure of production and productivity and inflation rates. The effects of this relationship are distorted the contribution rate of the productive sectors and the disproportionate of exchange rate in foreign trade.
raising the general level of prices is one of the way that have been used by previous governments (inflationary financing or deficit financing) in order to speed up the process of capital formation, depending on the availability of economic resources idle.
The fabricating inflation for development does not represent a true understanding of the nature of the
... Show More