The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutting-edge machine learning techniques, our methodology shows a notable improvement in the precision and effectiveness of well-log predictions. Standard well logs from a reference well were used to train machine learning models. Additionally, conventional wireline logs were used as input to estimate facies for unclassified wells lacking core data. R-squared analysis and goodness-of-fit tests provide a numerical assessment of model performance, strengthening the validation process. The multi-resolution graph-based clustering and similarity threshold approaches have demonstrated notable results, achieving an accuracy of nearly 98%. Applying these techniques to data from eighteen wells produced precise results, demonstrating the effectiveness of our approach in enhancing the reliability and quality of well-log production.
The aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.
One of the most important enhanced oil recoveries methods is miscible displacement. During this method preferably access to the conditions of miscibility to improve the extraction process and the most important factor in these conditions is miscibility pressure. This study focused on establishing a suitable correlation to calculate the minimum miscibility pressure (MMP) required for injecting hydrocarbon gases into southern Iraq oil reservoir. MMPs were estimated for thirty oil samples from southern Iraqi oil fields by using modified Peng and Robinson equation of state. The obtained PVT reports properties were used for tunning the equation of state parameters by making a match between the equation of state results with experimenta
... Show MoreBackground: Day case surgery has become widely accepted as a safe alternative to the inpatient care in up to 70% of the cases at a children’s hospital. It has the advantage of minimizing the psychological trauma of hospitalization, decreasing nosocomial infection, less costly and frees up hospital beds.Objectives: To assess the advantages and disadvantages of this type of surgery.Methods: this is a prospective study, in which two hundred thirty childhood tonsillectomies were performed as a day-case in the department of otolaryngology at Al Shaheed Gazi hospital, Medical City Complex during the period from October 2009 to September 2010. The patients age range from 3-12 years (Mean 7.2 years).Results: 46.08% males and 53.91% females wer
... Show MoreThe research aims to demonstrate the impact of tax techniques on the quality of services provided to income taxpayers by studying the correlational and influencing relationships between the exploited variable (tax techniques) and the dependent variable (the quality of services provided to income taxpayers), and in line with the research objectives, the main hypothesis of the research was formulated (there is a relationship Significance between tax techniques and the quality of services provided to income taxpayers) a number of sub-hypotheses emerged from this hypothesis that were stated in the research methodology, and a number of conclusions were reached, the most important of which were (through the use of the correlation coeff
... Show MoreConcrete structures are exposed to aggressive environmental conditions that lead to corrosion of the embedded reinforcement and pre-stressing steel. Consequently, the safety of concrete structures may be compromised, and this requires a significant budgets to repair and maintain critical infrastructure. Prediction of structural safety can lead to significant reductions in maintenance costs by maximizing the impact of investments. The aim of this paper is to establish a framework to assess the reliability of existing post-tensioned concrete bridges. A time-dependent reliability analysis of an existing post-tensioned involving the assessment of Ynys-y-Gwas bridge has been presented in this study. The main cause of failure of this bridge was c
... Show MoreAdolescence is considered to be one of the most dangerous and delicate stages that a juvenile goes through. It is a stage which the juvenile enters while he is a child, and emerges from it by being able to have children, but this does not mean the ability to become socially and psychologically mature
Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.