Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field emission scanning electron microscope investigations show an increase in the film grain size with increasing the number of laser pulses. The carrier concentration of the film decreases and the mobility increases as the number of laser pulses increases. The cerium oxide film deposited on silicon at 900 laser pulses exhibits a minimum optical reflection. The maximum PCE was 19.27% and fill factor of 87% was obtained after the deposition of silicon solar cell with cerium oxide nanostructured film deposited at 1000 laser pulses.
In this work, a CW CO2 laser was used for cutting samples of the fiber-reinforced
plastics (FRP) of three different types of reinforcing material; aramide, glass and carbon.
Cutting process was investigated throughout the variation of some parameters of cutting
process and their effects on cutting quality as well as the effect of an inert gas exist in the
interaction region and finally using a mechanical chopper in order to enhance the cutting
quality. Results obtained explained the possibility to perform laser cutting with high
quality in these materials by good control of the parameters and conditions of the process.
Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The opt
... Show MoreField experiments were carried out for the autumn season 2022- 2021 in the field of College of Agricultural Engineering Sciences - University of Baghdad - Jadiriyah Complex –Station A- to study a combination of organic fertilizer (Vermicompost) and cow manure as well as a control treatment (soil only) intertwined with Spraying with silicon, calcium and distilled water (control) in the growth and production of three cultivars of beet (Cylindra, Dark Red, Red) within the design of Completely Randomized Block Design at three replications, The number of treatments was 9 for each replicate. The means were compared according to the least significant difference (L.S.D) at a probability lev
Different coating layers of fluorescent agent (FCA) on the solar cells were used. An increase of 35% in the energy conversion efficiency of the solar cell have been obtained. This increase is attributed to the reduction ofthe reflected light, eflection spectra show low values at higher thickness which explained the increase ofthe conversion efficiency with increases of layer thickness.
In this study, poly4-(nicotinamido)-4-oxo-2-butenoic acid (PNOE) was prepared by the electro polymerization of 4-(nicotinamido)-4-oxo-2-butenoic acid (NOE) monomer on a 316 stainless steel (St.St) which acts as an anticorrosion coating. Fourier transforms infrared (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and cyclic voltammetry were used to diagnose the structure and the properties of the prepared polymer layer. The corrosion behavior of the uncoated and coated 316 St.St were evaluated by using an electro chemical polarization technique in 0.2 M hydrochloric acid solution as a corrosive medium at a temperature range of 293 to 323 K. Nano materials, such as nano ZnO and graphene were added in di
... Show MoreAbstract: In the present work, the heat transfer of Nano Aluminum Oxide -NAO- has been studied practically to define the appropriate insulation conditions. This study focuses on finding of the amount of heat transfer through a glass substrate that is coated with nanoalumina doped on PMMA matrix. The optical and thermal properties were systematically investigated. The density of heat flow rate, was calculated in the range values (240-260) W/m2 while the optimum values confine between (250-260) W/m2 at temp. (25-35)Co. The results showed that the thermal insulation of the sample was significantly enhanced at temp. (30-50)Co. The simulated net heat transfer through window decreased linearly with incr
... Show MoreThis work describes an experimental setup to evaluate the photodynamictoxicity of 650 nm diode laser and 532 nm Frequency-doubled Q-Switched Nd:YAG laser on the growth of Candida albicans as well as the potential fungicidal effect when combining the laser irradiation with specific photosensitizers namely methylene blue, toluidine blue, acridine orange and safranin O. In this study the findings showed that the number of colony-forming units per millilitre (CFU/ml) of C. albicans decreased with increasing exposure time. In particular in the case of the frequency doubled Nd:YAG laser combined with safranin O, the best lethal effect occurred at 11 minutes exposure time with 2.26 J/cm² energy density (89.18% reduction) in comparison with the
... Show MoreBackground Alloys with the addition of zirconium and niobium eliminate the adverse effects of aluminum and vanadium on the nervous system, the possibility of metallosis and the initiation of diseases (including cancers or Alzheimer›s disease). In addition, they have better corrosion resistance, and a Young›s modulus value similar to longitudinal bone tissue. Therefore, only choosing appropriate materials does not guarantee proper functioning of the implants, the surfaces of the implants also have to be suitable to meet the requirements. The laser surface hardening process modifies the surface properties by imparting microstructural changes, whereas surface remelting induces changes in the surface topography, roughness, wettability and w
... Show MoreThis research focuses on improvement of the corrosion behaviour of commercial pure titanium (Ti) grade II when exposed to Hank’s solution through different surface treatments. The disc shape of titanium samples were constructed to be divided according to their surface treatment. The first experimental group the Ti sample was exposed to computer numerical control (CNC) fiber laser machine. Whereas, the other experimental group the Ti sample was only coated with Polyetherketon keton (PEKK) by using carbon dioxide (CO2) laser technique while the last experimental group the Ti sample was treated with CNC fiber laser followed by PEKK coating by using CO2 laser technique. All were compared with the untreated control group. The electrochemical a
... Show MoreSolar energy has significant advantages compared to conventional sources such as coal and natural gas, including no emissions, no need for fuel, and the potential for installation in a wide range of locations with access to sunlight. In this investigation, heterocyclic derivatives were synthesized from several porphyrin derivatives (4,4',4",4"'-(porphyrin-5,10,15,20-tetrayl) tetra benzoic acid) compound (3), obtained by reaction Pyrrole with 4-formyl benzoic acid. Subsequently, porphyrin derivative-component amides 5a, 5b, and 5c were produced by reacting compound (3) with amine derivatives at a 1:4 molar ratio. These derivatives exhibited varying sensitivities for utilization in solar cells, with compound 5a displaying the highest power
... Show More