The aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other hand . Finally , we discuss an error estimation procedure for the global error, we present a new, carefully designed modification of this error estimate .
This study discusses risk management strategies caused by pandemic-related (Covid-19) suspensions in thirty-six engineering projects of different types and sizes selected from countries in the middle east and especially Iraq. The primary data collection method was a survey and questionnaire completed by selected project crew and laborers. Data were processed using Microsoft Excel to construct models to help decision-makers find solutions to the scheduling problems that may be expected to occur during a pandemic. A theoretical and practical concept for project risk management that addresses a range of global and local issues that affect schedule and cost is presented and results indicate that the most significant delays are due to a
... Show MoreThis study discusses risk management strategies caused by pandemic-related (Covid-19) suspensions in thirty-six engineering projects of different types and sizes selected from countries in the middle east and especially Iraq. The primary data collection method was a survey and questionnaire completed by selected project crew and laborers. Data were processed using Microsoft Excel to construct models to help decision-makers find solutions to the scheduling problems that may be expected to occur during a pandemic. A theoretical and practical concept for project risk management that addresses a range of global and local issues that affect schedule and cost is presented and results indicate that the most significant delays are due to a
... Show MoreThe estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t
... Show MoreThe purpose of this paper, is to study different iterations algorithms types three_steps called, new iteration,
The increasing use of plastics in various aspects of modern life resulted in the availability of enormous amount of wastes, including a negative effect on the environment and humans. So it is necessary to find solutions to deal with these wastes and ensure to use them as solutions to use in concrete mix . In this research the production of concrete containing high and low density polyethylene has been used by (5, 10, 15)% as a replacement of part of the volume of sand, so as to obtain concrete good compressive strength as well as other benefits such as improved possibility of pumping concrete and reduce the loss of concrete for workability polymer is a material that is non-absorbable of water . It is also intended to dispose of these was
... Show MoreNumerical Investigation was done for steady state laminar mixed convection and thermally and hydrodynamic fully developed flow through horizontal rectangular duct including circular core with two cases of time periodic boundary condition, first case on the rectangular wall while keeping core wall constant and other on both the rectangular duct and core walls. The used governing equations are continuity momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C.) methods. The Finite Difference approach with the Line Successive Over Relaxation (LSOR) method is used to obtain all the computational results the (B.F.C.) method is used to generate th
... Show MoreTransient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure sinusoidal amplitude range and
... Show More