Background: Surface treatment of machined dental zirconia for enhancement of the adhesion to resin cement, using Er,Cr:YSGG Laser. Materials and Methods: Total number of 42 zirconia disc specimens (9 mm diameter, and 2 mm height) was sintered according to the manufacturer instruction. They are divided into six groups, each group of seven samples. Laser groups (Experiment parameters) were depend on laser total irradiation time, pulse duration, and power. Group (A): 20 sec., 60 µs pulse duration. Group (B): 30 sec., 60 µs pulse duration. Group (C): 40 sec., 60 µs pulse duration. Group (D): 20 sec., 700 µs pulse duration. Group (E): 30 sec., 700 µs pulse duration, with different powers used (1, 1
... Show MoreIn the present work, radon gas concentrations in different surface soil samples in Baghdad governorate were measured using RAD-7 detector. The results have been shown that, the Radon gas concentrations ranged between (41.67±1.78Bq/m3), to (185.67±4.22Bq/m3), a map showing the distribution of the concentration of radon in selected areas was defined to identify areas with high pollution level. The reason for the high concentration of radon is that these surface soil samples are taken from agricultural areas. It is also known that fertilizers contain uranium levels as well as areas bombed in wars in the country. It is worth noting that all radon concentrations in Baghdad governorate are below the recommended minimum of 200-300Bq/m3) (Inte
... Show MoreBackground. Material tribology has widely expanded in scope and depth and is extended from the mechanical field to the biomedical field. The present study aimed to characterize the nanocoating of highly pure (99.9%) niobium (Nb), tantalum (Ta), and vanadium (V) deposited on 316L stainless steel (SS) substrates which considered the most widely used alloys in the manufacturing of SS orthodontic components. To date, the coating of SS orthodontic archwires with Nb, Ta, and V using a plasma sputtering method has never been reported. Nanodeposition was performed using a DC plasma sputtering system with three different sputtering times (1, 2, and 3 hours). Results. Structural and elemental analyses were conducted on the deposited coating
... Show MoreCopper selenide (Cu2Se) thin films were prepared by thermal evaporation at RT with thickness 500 nm. The heat-treating for (400 &500) K for the absorber layer has been investigated. This research includes, studying the structural properties of X-ray diffraction (XRD) that show the Cu2Se thin film (Cubic) and has a polycrystalline orientation prevalent (220). Moreover, studying the effect of annealing on their surface morphology properties by using Atomic Force Microscopy AFM. Optical properties were considered using the transmittance and absorbance spectra had been recorded when wavelength range (400 - 1000) nm in order to study the absorption coefficient and energy gap. It was found that these films had allowed direct transitio
... Show MoreThin films whose compositions can be expressed by (GeS2)100-xGax (x=0, 6,12,18) formula were obtained by thermal evaporation technique of bulk material at a base pressure of ~10-5 torr. Optical transmission spectra of the films were taken in the range of 300-1100 nm then the optical band gap, tail width of localized states, refractive index, extinction coefficient were calculated. The optical constants were found to increase at low concentration of Ga (0 to12%) while they decreases with further addition of Ga. The optical band gap was found to change in opposite manner to that of optical constants. The variation in the optical parameters are explained in terms of average bond energy
... Show MoreThe photoconductivity and its dependence on light intensity have been investigated in a-Ge20Se80 thin films as a function of temperature between (293–323)K. The result showed that the photoconductivity and photosensitivity increase with increase of annealing temperature. This behavior is interpreted in terms of the dispersive diffusion –controlled recombination of localized electrons and holes.
The primary objective of this study was to identify the mechanisms for the development and propagation of longitudinal cracks that initiate at the surface of composite pavement. In this study the finite element program ANSYS version (5.4) was used and the model worked out using this program has the ability to analyze a composite pavement structure of different layer properties. Also, the aim of this study was modeling and analyzing of the composite pavement structure with the physical presence of crack induced in concrete underlying layer. The results obtained indicates that increasing the thickness of the asphalt layer tends to decrease the stress intensity factor, which may be attributed to the rapidly decrease of horizontal tensile st
... Show More