Ti6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were divided randomly into three subsets for training, validation, and testing the developed hybrid intelligent model. ANOVA results revealed that feed rate is highly affected by the surface roughness followed by the depth of cut. One-way ANOVA, including a Post-Hoc test, was used to evaluate the performance of three developed models. The hybrid model of Artificial Neural Network-Gravitational Search Algorithm (ANN-GSA) has outperformed Artificial Neural Network (ANN) and Artificial Neural Network-Genetic Algorithm (ANN-GA) models. ANN-GSA achieved minimum testing mean square error of 7.41 × 10−13 and a maximum R-value of 1. Further, its convergence speed was faster than ANN-GA. GSA proved its ability to improve the performance of BPNN, which suffers from local minima problems.
Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show Moreالمستخلص:
في هذا البحث , استعملنا طرائق مختلفة لتقدير معلمة القياس للتوزيع الاسي كمقدر الإمكان الأعظم ومقدر العزوم ومقدر بيز في ستة أنواع مختلفة عندما يكون التوزيع الأولي لمعلمة القياس : توزيع لافي (Levy) وتوزيع كامبل من النوع الثاني وتوزيع معكوس مربع كاي وتوزيع معكوس كاما وتوزيع غير الملائم (Improper) وتوزيع
... Show MoreAbstract
This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis
... Show MoreExperimental investigations had been done in this research to demonstrate the effect of carbon fiber and Ceramic fillers contents on the tribological behaviour of (15% volume fraction) carbon-epoxy composite system under varying volume fraction, load, time and sliding distance. The wear resistance were investigated according to ASTM G99-05standard using pin on disc machine to present the composite tribological behaviour. The influence of three ceramic fillers, granite, perlite and calcium carbonate (CaCO3), on the wear of the carbon fabric reinforced epoxy composites under dry sliding conditions has been investigated. The effect of variants in volume fraction, applied load, time and sliding distance on the wear behaviour of po
... Show MoreToday, the prediction system and survival rate became an important request. A previous paper constructed a scoring system to predict breast cancer mortality at 5 to 10 years by using age, personal history of breast cancer, grade, TNM stage and multicentricity as prognostic factors in Spain population. This paper highlights the improvement of survival prediction by using fuzzy logic, through upgrading the scoring system to make it more accurate and efficient in cases of unknown factors, age groups, and in the way of how to calculate the final score. By using Matlab as a simulator, the result shows a wide variation in the possibility of values for calculating the risk percentage instead of only 16. Additionally, the accuracy will be calculate
... Show MoreIn order to a chive the aim of the research the researcher chose the (Nebras kindergarten) to be the search sample .the member of the sampleFrom(males and fameless)and the researcher chose the class of(butterfly) as experimental group to do the pantomime consist of(15)males and fameless, and put(singles, senses ,double senses and communal senses)in the binging of the experiment the researcher applied the measurement of(AL Kaswany and other)as(pre_ test)which prepare to measure, the movement skills for kindergarten, the measurement have the validity and reliability to knowledge the difference between the two experiment. The experiment continue from(20/1/201to 20/2/2014)in the end of experiment the researcher applied the measurement of(AL
... Show MoreIn this study, cloud point extraction combined with molecular spectrometry as an eco-friendly method is used for extraction, enrichment and determination of bendiocarb (BC) insecticide in different complex matrices. The method involved an alkaline hydrolysis of BC followed Emerson reaction in which the resultant phenol is reacted with 4-aminoantipyrene(4-AAP) in the presence of an alkaline oxidant of potassium ferric cyanide to form red colored product which then extracted into micelles of Triton X-114 as a mediated extractant at room temperature. The extracted product in cloud point layer is separated from the aqueous layer by centrifugation for 20 min and dissolved in a minimum amount of a mixture ethanol: water (1:1) followed
... Show MoreSignature verification involves vague situations in which a signature could resemble many reference samples or might differ because of handwriting variances. By presenting the features and similarity score of signatures from the matching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy, a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertainties and ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values, which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1 neutrosophic representation is also unable to adjust to various
... Show More